• Title/Summary/Keyword: room cooling

Search Result 487, Processing Time 0.027 seconds

Development of heat exchanger for underground water heat. II - Design and manufacture for heat exchanger of underground water - (지하수 이용을 위한 열교환기 개발. II - 지하수이용 냉·난방기 설계제작 -)

  • Lee, W.Y.;Ahn, D.H.;Kim, S.C.;Park, W.P.;Kang, Y.G.;Kim, S.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.4 no.1
    • /
    • pp.128-137
    • /
    • 2002
  • This study was conducted to develop the heat exchanger by utilizing the heat energy of underground water(15℃), which might be used for cooling and heating system of the agricultural facilities. We developed the heat exchanger by using the parallel type plat fin tube made of Aluminum(Al 6063), which was named Aloo-Heat(No. 0247164, offered by Korean Intellectual property Office). The trial manufactures were made from Aloo-heat which was 600mm, 700mm length respectively, and It were welded to the end "U" type in order to direct flow of the underground water. The performance test was carried out under the condition of open space and room temperature with the change of flow rate of the underground water and air. The results are as follows. 1. The trial manufactures had convection heat value from 33 to 156 W/m2℃, and It was coincided with design assumption. 2. The amount of energy transfer was increased with the increment of the area of heat transfer, the air flow, the gap of temperature inlet & outlet the underground water and the air. 3. The heat value was 6,825W when the air flow was 6,000m3/h and the gap of temperature between inlet and outlet of the underground water was 6℃, and It dropped from 25.8℃ to 23.2℃(-2.6℃ difference). The convection heat value was 88.5W/m2℃. 4. The heat value was 2.625W when the air flow was 4,000m3/h and the gap of temperature between inlet and outlet the underground water was 2℃, and It dropped from 27℃ to 22.5℃(-4.5℃ difference). The convection heat value was 33.6W/m2℃. 5. Correlation values(R2) of the testing heat values of the trial manufacture type I, II, and III were 0.9141, 0.8935, and 0.9323 respectively, and correlation values(R2) of the amount of the air flow 6,000m3/h, 5,000m3/h, 4,000m3/h were 0.9513, 0.9414, and 0.9003 respectively.

The Incidence of Microorganisms during the Slaughtering Process of Chicken (닭 도계공정 중의 미생물 증감 추이)

  • Cha Seong Kwan;Seo Mi Young;Kim Yoon Sook;Kim Myung Ho;Kim Yun Ji
    • Food Science of Animal Resources
    • /
    • v.24 no.4
    • /
    • pp.335-341
    • /
    • 2004
  • This study was carried out to evaluate the microbiological quality of poultry carcasses at different slaughtering process in large (>50,000 chicken/day) and small (<30,000 chicken/day) scale slaughtering houses. Whole bird rinse technique was used to analyze the incidence of microorganisms on poultry carcasses in each process of before visceration, after evisceration, after final wash, after main chilling and in cold room. In summer time, small scale slaughterhouse showed lower incidence of aerobic microorganisms (10$\^$4/ CFU/mL) than those of large scale slaughterhouse (10$\^$5/ CFU/mL) at the process of after main chilling and in cold room. But small scale slaughterhouse showed higher incidence of E. coli (10$^2$-10$^4$ CFU/mL) than those of large scale slaughterhouse (10$\^$-2/ CFU/mL) at each slaughtering process observed. During autumn and winter time, small scale slaughterhouse showed similar incidence of aerobic microorganisms as large scale slaughterhouse (10$\^$5/ CFU/mL after evisceration, 10$^4$ CFU/mL after main chilling and cold storage). Samples from carcasses during autumn and winter time in cold room showed no difference in E. coli counts (10$^2$ in autumn time and 10$^3$ CFU/mL in winter time) between large and small scale slaughterhouse. In spring time, small scale slaughterhouse showed lower incidence of aerobic microorganisms than those of large scale slaughterhouse at each slaughtering process observed except after main chilling. Small scale slaughterhouse showed higher incidence of aerobic microorganisms in final cooling water than large scale slaughterhouse during spring time.

Microbiological Hazard Analysis for HACCP System Application to Non Heat-Frozen Carrot Juice (비가열냉동 당근주스의 HACCP 시스템 적용을 위한 미생물학적 위해 분석)

  • Lee, Ung-Soo;Kwon, Sang-Chul
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.2
    • /
    • pp.79-84
    • /
    • 2014
  • This study has been performed for about 270 days at analyzing biologically hazardous factors in order to develop HACCP system for the non heat-frozen carrot juice. A process chart was prepared by manufacturing process of raw agricultural products of non heat-frozen carrot juice, which was contained water and packing material, storage, washing, cutting, extraction of the juice, internal packing, metal detection, external packing, storage and consignment (delivery). As a result of measuring Coliform group, Staphylococcus aureus, Salmonella spp., Bacillus cereus, Listeria Monocytogenes, Enterohemorrhagic E. coli before and after washing raw carrot, Standard plate count was $4.7{\times}10^4CFU/g$ before washing but it was $1.2{\times}10^2CFU/g$ detected after washing. As a result of testing airborne bacteria (Standard plate count, Coliform group, Yeast and Fungal) depending on each workplace, number of microorganism of in packaging room, shower room and juice extraction room was detected to be 10 CFU/Plate, 60 CFU/Plate, 20 CFU/Plate, respectively. As a result of testing palm condition of workers, as number of Standard plate count, Coliform group and Staphylococcus aureus was represented to be high as $6{\times}10^4CFU/cm^2$, $0CFU/cm^2$ and $0CFU/cm^2$, respectively, an education and training for individual sanitation control was considered to be required. As a result of inspecting surface pollution level of manufacturing facility and devices, Coliform group was not detected in all the specimen but Standard plate count was most dominantly detected in scouring kier, scouring kier tray, cooling tank, grinding extractor, storage tank and packaging machine-nozzle as $8.00{\times}10CFU/cm^2$, $3.0{\times}10CFU/cm^2$, $4.3{\times}10^2CFU/cm^2$, $7.5{\times}10^2CFU/cm^2$, $6.0{\times}10CFU/cm^2$, $8.5{\times}10^2CFU/cm^2$ respectively. As a result of analyzing above hazardous factors, processing process of ultraviolet ray sterilizing where pathogenic bacteria may be prevented, reduced or removed is required to be controlled by CCP-B (Biological) and critical level (critical control point) was set at flow speed is 4L/min. Therefore, it is considered that thorough HACCP control plan including control criteria (point) of seasoning fluid processing process, countermeasures in case of its deviation, its verification method, education/training and record control would be required.

Changes in microbial phase by period after hepa filter replacement in King oyster(Pleurotus eryngii) mushroom cultivation (큰느타리 재배사에서 헤파필터 교체 이후 기간에 따른 미생물상 변화)

  • Park, Hye-Sung;Min, Gyong-Jin;Lee, Eun-Ji;Lee, Chan-Jung
    • Journal of Mushroom
    • /
    • v.18 no.4
    • /
    • pp.398-402
    • /
    • 2020
  • This study was conducted to set up a proper replacement cycle of High Efficiency Particulate Air (HEPA) filters by observing the microbial populations in the air of the cultivation house of Pleurotus eryngii, before and after HEPA filter replacement at different periods. The density of bacteria and fungi in the air during each cultivation stage was measured using a sampler before the replacement of the HEPA filter. The results showed that airborne microorganisms had the highest density in the mushroom medium preparation room, with 169.7 CFU/㎥ of bacteria and 570 CFU/㎥ of fungi, and the removed old spaun had 126.3 CFU/㎥ of bacteria and 560 CFU/㎥ of fungi. The density of bacteria and fungi in the air at each cultivation stage before the replacement of the HEPA filter was 169.7 CFU/㎥ and 570 CFU/㎥, and 126.3 CFU/㎥ and 560 CFU/㎥, during the medium production and harvesting processes, respectively. After the replacement of the HEPA filter, the bacterial density was the lowest in the incubation room and the fungal density was the lowest in the cooling room. The microbial populations isolated at each period consisted of seven genera and seven species before the replacement, including Cladosporium sp., six genera and six species after 1 month of replacement, including Penicillium sp., 5 genera and 7 species after 3 months of replacement, including Mucor plumbeus, and 5 genera and 12 species, 5 genera and 10 species, and 5 genera and 10 species, 4, 5, and 6 months after the replacement, respectively, including Penicillium brevicompactum. During the period after replacement, the species were diversified and their number increased. The density of airborne microorganisms decreased drastically after the replacement of the HEPA filter. Its lowest value was recorded after 2 months of replacement, and it increased gradually afterwards, reaching a level similar to or higher than that of the pre-replacement period. Therefore, it was concluded that replacing the HEPA filter every 6 months is effective for reducing contamination.

Effects of skin temperature change, cold pain and muscle activity by Cold Air Application type on the induced delayed onset muscle soreness (지연성 근육통 유발 후 냉기 적용 방법이 피부온도의 변화, 냉각 통과 근육 기능에 미치는 효과)

  • Choi, Yoorim;Jung, Bongjae;Hwang, Byeongjun
    • Journal of the Korean Society of Radiology
    • /
    • v.7 no.1
    • /
    • pp.99-106
    • /
    • 2013
  • The purpose of this study was to after induced delayed onset muscle soreness, the purpose of this study is to present the effective way on skin temperature changes and cold pain for 14 subjects during to applied with only Cold-jet stream and Cold-jet stream with infra red. 14 healthy men and women who delayed onset muscle soreness eccentric contractions induced by exercise and then the biceps alone was applied to the Cold-jet stream. We measured the time that skin temperature fall from room temperature to $10^{\circ}C$(first period), the time rewarmed from $10^{\circ}C$ to $20^{\circ}C$(second period), the time fall again to $10^{\circ}C$(third period) and the time rewarmed again to $20^{\circ}C$(fourth period). Cold-jet stream with infrared combination therapy was performed with the same method. Results of this study were 1st and 2nd experimental cooling experiments in the to fall to $10^{\circ}C$ Cold-jet stream with infrared combination therapy than in the Cold-jet stream was longer(p<.05). At second period, It took longer in Cold-jet stream with infrared rewarmed than Cold-jet stream to rewarm skin(p<.05). Cold-jet stream with infrared combination therapy than Cold-jet stream had less incidence of cold pain(p<.05). Thickness of biceps brachii were found significant difference related measurment each group was consistent. In this study, Cold-jet stream with infrared combination therapy more effective than Cold-jet stream in reduced cold pain and lowering skin temperature. This work was supported by education capacity building project fund of Taegu Science University, 2012.

A facile synthesis of transfer-free graphene by Ni-C co-deposition

  • An, Sehoon;Lee, Geun-Hyuk;Jang, Seong Woo;Hwang, Sehoon;Yoon, Jung Hyeon;Lim, Sang-Ho;Han, Seunghee
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.129-129
    • /
    • 2016
  • Graphene, as a single layer of $sp^2$-bonded carbon atoms packed into a 2D honeycomb crystal lattice, has attracted much attention due to its outstanding properties. In order to synthesize high quality graphene, transition metals, such as nickel and copper, have been widely employed as catalysts, which needs transfer to desired substrates for various applications. However, the transfer steps are not only complicated but also inevitably induce defects, impurities, wrinkles, and cracks of graphene. Furthermore, the direct synthesis of graphene on dielectric surfaces has still been a premature field for practical applications. Therefore, cost effective and concise methods for transfer-free graphene are essentially required for commercialization. Here, we report a facile transfer-free graphene synthesis method through nickel and carbon co-deposited layer. In order to fabricate 100 nm thick NiC layer on the top of $SiO_2/Si$ substrates, DC reactive magnetron sputtering was performed at a gas pressure of 2 mTorr with various Ar : $CH_4$ gas flow ratio and the 200 W DC input power was applied to a Ni target at room temperature. Then, the sample was annealed under 200 sccm Ar flow and pressure of 1 Torr at $1000^{\circ}C$ for 4 min employing a rapid thermal annealing (RTA) equipment. During the RTA process, the carbon atoms diffused through the NiC layer and deposited on both sides of the NiC layer to form graphene upon cooling. The remained NiC layer was removed by using a 0.5 M $FeCl_3$ aqueous solution, and graphene was then directly obtained on $SiO_2/Si$ without any transfer process. In order to confirm the quality of resulted graphene layer, Raman spectroscopy was implemented. Raman mapping revealed that the resulted graphene was at high quality with low degree of $sp^3$-type structural defects. Additionally, sheet resistance and transmittance of the produced graphene were analyzed by a four-point probe method and UV-vis spectroscopy, respectively. This facile non-transfer process would consequently facilitate the future graphene research and industrial applications.

  • PDF

Strength Properties of High-Strength Concrete Exposed at High Temperature (고온을 받은 고강도 콘크리트의 강도특성)

  • 윤현도;김규용;한병찬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.698-707
    • /
    • 2002
  • A review is presented of experimental studies on the strength performance of concrete exposed at short-term and rapid heating as in a fire and after cooling. Emphasis is placed on concretes with high original compressive strengths, that is, high-strength concrete(HSC). The compressive strength-temperature relationships from the reviewed test programs are distinguished by the test methods used in obtaining the data(unstressed, unstressed residual strength, and stressed tests) and by the aggregate types(normal or lightweight), The compressive strength properties of HSC vary differently with temperature than those of NSC. HSC have higher rates of strength loss than lower strength concrete in the temperature range of between 20$^{\circ}C$ to about 400$^{\circ}C$. These difference become less significant at temperatures above 400$^{\circ}C$ compressive strengths of HSC at 800$^{\circ}C$ decrease to about 30 % of the original room temperature strength. A comparison of lest results with current code provisions on the effects of elevated temperatures on concrete compressive strength and elastic modulus shows that the CEN Eurocodes and the CEB provisions are unconservative.

Varietal Difference in Retrogradation of Cooked Rice and Its Association with Physicochemical Properties of Rice Grain

  • Choi, Hae Chune;Hong, Ha Cheal;Cho, Soo Yeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.355-363
    • /
    • 1999
  • The experiments were carried out to elucidate the varietal variation of retrogradation in aged cooked rice and its association with some physicochemical properties of milled rice. The fifteen rice materials were selected from forty-three low-amylose japonica and Tongil-type rice cultivars based on palatability and retrogradation of cooked rice stratified by preliminary sensory evaluation of warm and cooled cooked rice. One japonica glutinous rice variety was included for comparison of retrogradation of cooked rice. The $\alpha$-amylase-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The desirable checking time for evaluating the varietal difference in deterioration of aged cooked rice was four hours after storing in room temperature and two hours after preserving in refrigerator based on the largest coefficients of variations in degree of retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were Ilpumbyeo, Chucheongbyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tongil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. The retrogadation index represented by the percentage of retrogradation difference between warm and cooled cooked rice to original estimates of warm cooked rice was significantly affected by the degree of retrogradation of cooled cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked nce. The varietal difference in retrogradation of cooked rice can be effectively classified by scatter diagram on the plane of upper two principal components based on some retrogradation properties of cooked rice. The deteriorated structural change in cooled cooked rice by observing through the scanning electron microscope was more conspicuous in the fastly retrograded cooked rice than in the slower one.

  • PDF

Evaluation for Mechanical Properties of High Strength Concrete at High Temperature by Stressed Test and Unstressed Test (설계하중 사전재하 및 비재하방식에 의한 고강도콘크리트의 고온특성 평가)

  • Kim, Gyu-Yong;Kim, Young-Sun;Lee, Tae-Gyu;Park, Chan-Kyu;Lee, Seung-Hoon
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.583-592
    • /
    • 2008
  • Recently, the effects of high temperature on compressive strength, elastic modulus and strain at peak stress of high strength concrete were experimentally investigated. The present study is aimed to study the effect of elevated temperatures ranging from 20 to 700 on the material mechanical properties of high strength concrete of 40, 60, 80 MPa grade. In this study, the types of test were the stressed test and stressed residual test that the specimens are subjected to a 25% of ultimate compressive strength at room temperature and sustained during heating and when target temperature is reached, the specimens are loaded to failure. And another specimens are loaded to failure after 24 hour cooling time. Tests were conducted at various temperatures ($20{\sim}700^{\circ}C$) for concretes made with W/B ratios 46%, 32% and 25%. Test results showed that the relative values of compressive strength and elastic modulus decreased with increasing compressive strength grade of specimen and the axial strain at peak stress were influenced by the load before heating. Thermal strain of concrete at high temperature was affected by the preload level as well as the compressive strength. Finally, model equation for compressive strength and elastic modulus of heated high strength concrete proposed by result of this study.

Production of Pups Following Artificial Insemination by Canine Intrauterine Inseminator (개 자궁내 인공수정기에 의한 인공수정 후 산자생산)

  • 공일근;조성균;임용택;이상인;위성하
    • Journal of Veterinary Clinics
    • /
    • v.16 no.2
    • /
    • pp.375-380
    • /
    • 1999
  • This study was conducted to develop an intrauterine inseminator (IUI) to deposit of frozen semen into uterus and to evaluate the results obtained after artificial insemination by IUI. Two Japanese spitzs (2 to 4 years of age) were used as semen donors. Semen was collected by manual masturbation into sterile glass collection tubes and separated into 3 fractions with only the sperm-rich fractions retained for further examination. Sperm motility >70%, sperm concentration of 200 to $400{\times}10^6 cells/ml$$\times$g for 5 min and poured out the suspended solution, and then diluted with 2 ml Tris-buffer which was consisted of 2.4 g Tris, 1.4 g citric acid, 0.8 g glucose, 0.1 $\mu\textrm{g}$/ml streptomycin, 100 IU/ml penicillin, 20 ml egg yolk to 100 ml mili-Q water (Ext I) or supplemented with 8 ml glycerol and 1 ml Equex STM paste to 100 rnl (Ext II). The diluted semen was cooled to 5$^{\circ}C$ in cold room, where the temperature in the sample reached 5$^{\circ}C$. Two h after beginning the cooling procedure, 2 ml of Ext II, also at 5$^{\circ}C$, was added and mixed by gently reversing the tubes several times during 1 h. The final sperm concentration for freezing was approximately $50{\times}10^6 cells/ml$. After equilibration, the semen was loaded into 0.5 ml straw and frozen on the liquid nitrogen vapour in styrofoam box. The straws were thawed at 7$0^{\circ}C$ for precisely 6 sec. After thawing of each straw, the frozen semen can survived over 50% motility. All the females were inseminated twice with 1 ml of $25{\times}10^6 cells/ml$

  • PDF