• Title/Summary/Keyword: roof surface

Search Result 270, Processing Time 0.031 seconds

The Development Process of Vehicle Roof Carrier using One Side Release System (측면 단동 릴리즈 시스템을 이용한 자동차용 루프 캐리어 개발 프로세스)

  • Jang, Dong-Hwan;Ko, Byung-Doo;Lee, In-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.56-62
    • /
    • 2010
  • This paper presents the development process of roof carrier assembly using a one side release system for a vehicle. An RV(Recreational Vehicle) or SUV(Sports Utility Vehicle) has a roof carrier system on an upper surface of a roof panel for loading large or long size baggage. Such a roof carrier system is comprised of a roof rack longitudinally mounted on a roof panel and cross bar perpendicularly installed in the horizontal direction. Several locking mechanisms used in most vehicle roof carrier systems are composed with both side releasable locking ones. The obvious drawback to this arrangement is that when the user desires to reposition the cross bar, first one of the locking members must be unlocked and then the user must walk around to the opposite side of the vehicle to unlock the other member. In this paper, we proposed a newly locking mechanism, which allows a user simultaneously place both locking members of the roof carrier in locked and unlocked positions. In order to estimate design compatibility, structural and modal analysis is performed. Furthermore, a prototype based on the proposed design has been made, and then durability test carried out. From the simulation and experimental results, the proposed roof carrier system is proved effective and safe.

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

A Study on the Characteristics by Design Component Elements of the Facade in Elementary School Buildings in the 2000's (2000 년대 초등학교 교사 입면의 디자인 구성요소에 의한 특성 연구)

  • Seo, Hee-Sook
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.5
    • /
    • pp.38-47
    • /
    • 2010
  • The purpose of this study is to examine the characteristics by design component elements of the facade in elementary school buildings after the 7th educational curriculum. This study choose twenty five elementary school as the subjects of the study. And among many elevations of building, an elevation that is alongside of the schoolyard is chosen because this elevation has the highest visual influence on passers-by. To begin with, this elevation is divided into the roof and the surface of a wall, The roof is divided into roof styles, existence of roof and materials. The surface of a wall is divided into design principles(balance, contrast, rhythm), the formal organization(basic elements and form, and transformation of form), the ornamental composition, materials and colors. The results of the research are summarized as follows: First of all, motifs of classical architecture were well expressed in this period and postmodern tendency had been shown until 2005. After Build Transfer Lease(BTL), however, tendency of classical architecture, contrast by the size of the form and base element by point disappeared. Instead, asymmetrical and flat tendency is expressed. Also, emphasized design of the building elevation appear by basic colors of Munsell, not motifs of classical architecture.

Experimental study to determine the optimal tensile force of non-open cut tunnels using concrete modular roof method

  • Jung, Hyuk-Sang;Kim, Jin-Hwan;Yoon, Hwan-Hee;Sagong, Myung;Lee, Hyoung-Hoon
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.229-236
    • /
    • 2022
  • In this study, a model experiment and field experiment was conducted to introduce the optimal tensile force when constructing a non-open cut tunnel according to the ground conditions of sandy soil. CMR (Concrete Modular Roof) method is economical because of the high precision and excellent durability, and corrosion resistance, and the inserted parts can be used as the main structure of a tunnel. In addition the CMR method has a stable advantage in interconnection because the concrete beam is press-fitted compared to the NTR (New Tubular Roof) method, and the need for quality control can be minimized. The ground conditions were corrected by adjusting the relative density of sandy soil during the construction of non-open cut tunnels, and after introducing various tensile forces, the surface settlement according to excavation was measured, and the optimal tensile force was derived. As a result of the experiment, the amount of settlement according to the relative density was found to be minor. Furthermore, analysis of each tensile force based on loose ground conditions resulted in an average decrease of approximately 22% in maximum settlement when the force was increased by 0.8 kN per segment. Considering these results, it is indicated that more than 2.0 kN tensile force per segment is recommended for settlement of the upper ground.

Effects of Building-roof Cooling on Scalar Dispersion in Urban Street Canyons (도시 협곡에서 건물 지붕 냉각이 스칼라 물질 확산에 미치는 영향)

  • Park, Soo-Jin;Kim, Jae-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.331-341
    • /
    • 2014
  • In this study, the effects of building-roof cooling on scalar dispersion in three-dimensional street canyons are investigated using a computational fluid dynamics (CFD) model. For this, surface temperature of building roof is systematically changed and non-reactive pollutants are released from street bottom in urban street canyons with the aspect ratio of 1. The characteristics of flow, air temperature, and non-reactive pollutant dispersion in the control experiment are analyzed first. Then, the effects of building-roof cooling are investigated by comparing the results with those in the control experiment. In the control experiment, a portal vortex which is a secondary flow induced by ambient air flow is formed in each street canyon. Averaged air temperature is higher inside the street canyon than in both sides of the street canyon, because warmer air is coming into the street canyon from the roof level. However, air temperature near the street bottom is lower inside the street canyon due to the inflow of cooler air from both sides of the street canyon. As building-roof temperature decreases, wind speed at the roof level increases and portal vortex becomes intensified (that is, downdraft, reverse flow, and updraft becomes stronger). Building-roof cooling contributes to the reduction of average concentration of the non-reactive pollutants and average air temperature in the street canyon. The results imply that building-roof cooling has positive effects on improvement of thermal environment and air quality in urban areas.

A caving self-stabilization bearing structure of advancing cutting roof for gob-side entry retaining with hard roof stratum

  • Yang, Hongyun;Liu, Yanbao;Cao, Shugang;Pan, Ruikai;Wang, Hui;Li, Yong;Luo, Feng
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • An advancing cutting roof for gob-side entry retaining with no-pillar mining under specific geological conditions is more conducive to the safe and efficient production in a coalmine. This method is being promoted for use in a large number of coalmines because it has many advantages compared to the retaining method with an artificial filling wall as the gateway side filling body. In order to observe the inner structure of the gateway cutting roof and understand its stability mechanism, an equivalent material simulation experiment for a coalmine with complex geological conditions was carried out in this study. The results show that a "self-stabilization bearing structure" equilibrium model was found after the cutting roof caving when the cut line deviation angle was unequal to zero and the cut height was greater than the mining height, and the caving roof rock was hard without damage. The model showed that its stability was mainly controlled by two key blocks. Furthermore, in order to determine the optimal parameters of the cut height and the cut line deviation angle for the cutting roof of the retaining gateway, an in-depth analysis with theoretical mechanics and mine rock mechanics of the model was performed, and the relationship between the roof balance control force and the cut height and cut line deviation angle was solved. It was found that the selection of the values of the cut height and the cut line deviation angle had to conform to a certain principle that it should not only utilize the support force provided by the coal wall and the contact surface of the two key blocks but also prevent the failure of the coal wall and the contact surface.

Full-scale study of wind loads on roof tiles and felt underlay and comparisons with design data

  • Robertson, A.P.;Hoxey, R.P.;Rideout, N.M.;Freathy, P.
    • Wind and Structures
    • /
    • v.10 no.6
    • /
    • pp.495-510
    • /
    • 2007
  • Wind pressure data have been collected on the tiled roof of a full-scale test house at Silsoe in the UK. The tiled roof was of conventional UK construction with a batten-space and bitumen-felt underlay beneath the interlocking concrete tiles. Pressures were monitored on the outer surface of selected tiles, at several locations within the batten-space, and beneath the underlay. Data were collected both with and without ventilator tiles installed on the roof. Little information appears to exist on the share of wind load between tiles and underlays which creates uncertainty in the design of both components. The present study has found that for the critical design case of maximum uplifts it would be appropriate to assign 85% of the net roof load to the tiles and 15% to the underlay when an internal pressure coefficient of -0.3 is used, and to assign 60% to the tiles and 50% to the underlay when an internal pressure coefficient of +0.2 is assumed (an element of design conservatism is inherent in the apparent 110% net loading indicated by the latter pair of percentage values). These findings indicate that compared with loads implied by BS 6399-2, UK design loads for underlay are currently conservative by 25% whilst tile loads are unconservative by around 20% in ridge and general regions and by around 45% in edge regions on average over roof slopes of $15^{\circ}-60^{\circ}$.

A Study on the Building Design Guideline Development Considering Photovoltaic Panel Installation (태양광 패널 설치를 고려한 건축 디자인 지침 개발 연구)

  • Moon, Chang-Ho
    • Journal of the Regional Association of Architectural Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.139-146
    • /
    • 2019
  • The purpose of this study is to propose the building design guideline considering photovoltaic panel installation through the analysis of relevant guidelines from home and abroad in terms of building design and solar panel installation. Conclusions can be summarized as followings; Considerations in building design : selection of the site with high solar accessibility, avoidance of the shade from the adjacent building & trees, south facing orientation of solar panel in building design, removal of shade on the solar panel from the part of building itself, load consideration of solar panel & fixing materials, safe passage securement for solar system maintenance, and planning of piping and mechanical room for solar system. Considerations in solar panel installation : harmonizing of solar panel with surrounding environment, unity of solar panel orientation & slope, regular maintenance of solar system, (in case of flat roof installation) solar panel installation afloat over the roof, installation area within the roof floor, and lower than parapet height, (in case of sloped roof installation) solar panel installation parallel with the roof slope, ventilation space securement below the panel, installation area within the roof surface, and similar material installation in empty space.

Comparison of Rooftop Surface Temperature and Indoor Temperature for the Evaluation of Cool Roof Performance according to the Rooftop Colors in Summer: Using Thermal Infrared Camera Mounted on UAV (옥상 색상에 따른 쿨루프 성능평가를 위한 여름철 옥상 표면 및 실내온도 비교 분석 : 무인항공기에 장착된 열적외선 카메라를 이용하여)

  • Lee, Ki Rim;Seong, Ji Hoon;Han, You Kyung;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • The intensity and the number of days of high temperature occurrence are also high and record heat occurred. In addition, the global warming phenomenon is intensifying globally, and especially in South Korea, the urban heat island phenomenon is also occurring due to rapid urbanization due to rapid industrial development. As the temperature of the city rises, it causes problems such as the comfort of the residential living and the cooling load. In this study, the cool roof performance is evaluated according to the roof color to reduce these problems. Unlike previous studies, UAV(Unmanned Aerial Vehicle) thermal infrared camera was used to obtain the surface temperature (white, grey, green, blue, brown, black) according to the rooftop color by remote sensing technique. As a result, the surface temperature of white color was $11{\sim}20^{\circ}C$ lower than other colors. Also air conditioning temperature of white color was $1.5{\sim}4.4^{\circ}C$ lower than other colors and the digital thermometer of white color was about $1.5{\sim}3.5^{\circ}C$ lower than other colors. It was confirmed that the white cool roof performance is the best, and the UAV and the thermal infrared camera can confirm the cool roof performa.

A model to analyze a buried structure response to surface dynamic loading

  • Dancygier, A.N.;Karinski, Y.S.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.1
    • /
    • pp.69-88
    • /
    • 2000
  • A relatively simple model of a buried structure response to a surface loading that can simulate a possible opening and closure of a gap between the soil and the structure is presented. Analysis of the response of small and medium scale buried roof slabs under surface impulsive loading shows that the model's predictions are in fairly good agreement with the experimental results. Application of the model to a study case shows the relative influence of system parameters such as, the depth of burial, the arching coefficient, and the roof thickness, on the interface pressure and on the roof displacement. This model demonstrates the effect of a gap between the structure and the soil. The relative importance of including a gap opening and closure in the analysis is examined by the application of the model to a study case. This study results show that the deeper the depth of burial, the longer the gap duration, and the shorter the duration of the initial interface impact, while the higher the soil's shear resistance, the higher the gap duration, and the shorter the initial interface impact duration.