• Title/Summary/Keyword: roof surface

Search Result 270, Processing Time 0.033 seconds

An Experimental and Numerical Study on the Behavior Characteristics of Single-span Plastic Greenhouse under Snow Load (적설하중 재하실험과 구조해석을 통한 단동 비닐하우스의 거동 연구)

  • Song, Hosung;Kim, Yu-Yong;Yu, Seok-Cheol;Lim, Seong-Yoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.4
    • /
    • pp.45-53
    • /
    • 2022
  • In this study, the loading test and structural analysis were performed on the snow load and the results were compared. The load plates were loaded on the roof surface of the model, and structural analysis was performed under the same conditions. The result of loading test, the maximum displacement was observed in the center of the top, and the maximum stress was observed near the bottom point. Displacement and stress were found to have a high linear relationship with the load. Comparing the structural analysis results with the loading test results, the maximum displacement difference is 4.5% and the maximum stress difference is 10.2%. It is expected that closer results can be derived if the boundary conditions for the longitudinal direction of the model are clarified during experiments and analysis.

CFD Study on the Influence of Atmospheric Stability on Near-field Pollutant Dispersion from Rooftop Emissions

  • Jeong, Sang Jin;Kim, A Ra
    • Asian Journal of Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.47-58
    • /
    • 2018
  • The aim of this work is to investigate the effect of atmospheric stability on near-field pollutant dispersion from rooftop emissions of a single cubic building using computational fluid dynamics (CFD). This paper used the shear stress transport (here after SST) k-${\omega}$ model for predicting the flow and pollutant dispersion around an isolated cubic building. CFD simulations were performed with two emission rates and six atmospheric stability conditions. The results of the simulations were compared with the data from wind tunnel experiments and the result of simulations obtained by previous studies in neutral atmospheric condition. The results indicate that the reattachment length on the roof ($X_R$) obtained by computations show good agreement with the experimental results. However, the reattachment length of the rooftop of the building ($X_F$) is greatly overestimated compared to the findings of wind tunnel test. The result also shows that the general distribution of dimensionless concentration given by SST k-${\omega}$ at the side and leeward wall surfaces is similar to that of the experiment. In unstable conditions, the length of the rooftop cavity was decreased. In stable conditions, the horizontal velocity in the lower part around the building was increased and the vertical velocity around the building was decreased. Stratification increased the horizontal cavity length and width near surface and unstable stratification decreased the horizontal cavity length and width near surface. Maintained stability increases the lateral spread of the plume on the leeward surface. The concentration levels close to the ground's surface under stable conditions were higher than under unstable and neutral conditions.

Petrological and Geological Safety Diagnosis of Multi-storied Stone Pagoda in the Daewonsa Temple, Sancheong, Korea (대원사 다층석탑의 지질학적 및 암석학적 안전진단)

  • 이찬희;서만철
    • Economic and Environmental Geology
    • /
    • v.35 no.4
    • /
    • pp.355-368
    • /
    • 2002
  • The multi-storied Daewonsa stone pagoda (Treasure No. 1112) in the Sancheong, Korea was studied on the basis of deterioration and geological safety diagnosis. The stone pagoda is composed mainly of granitic gneiss, partly fine-grained granitic gneiss, leucocratic gneiss, biotite granite and ceramics. Each rock of the pagoda is highly exfoliated and fractured along the edges. Some fractures in the main body and roof stones are treated by cement mortar. This pagoda is strongly covered with yellowish to reddish brown tarnish due to the amorphous precipitates of iron hydroxides. Dark grey crust by manganese hydroxides occur Partly, and some Part coated with white grey gypsum and calcite aggregates from the reaction of cement mortar and rain. As the main body, roof and upper part of the pagoda, the rocks are developed into the radial and linear cracks. Surface of this pagoda shows partly yellowish brown, blue and green patchs because of contamination by algae, lichen, moss and bracken. Besides, wall-rocks of the Daewonsa temple and rock aggregates in the Daewonsa valley are changed reddish brown color with the same as those of the pagoda color. It suggests that the rocks around the Daewonsa temple are highly in iron and manganese concentrations compared with the normal granitic gneiss which color change is natural phenomena owing to the oxidation reaction by rain or surface water with rocks. Therefore, for the attenuation of secondary contamination, whitening and reddishness, the possible conservation treatments are needed. Consisting rocks of the pagoda would be epoxy to reinforce the fracture systems for the structural stability on the basements.

Analysis of Surface Temperature Characteristics by Land Surface Fabrics Using UAV TIR Images (UAV 열적외 영상을 활용한 피복재질별 표면온도 특성 분석)

  • SONG, Bong-Geun;KIM, Gyeong-Ah;SEO, Kyeong-Ho;LEE, Seung-Won;PARK, Kyung-Hun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.3
    • /
    • pp.162-175
    • /
    • 2018
  • The purpose of this study was to analyze the surface temperature of surface fabrics using UAV TIR images, to mitigate problems in the thermal environment of urban areas. Surface temperature values derived from UAV images were compared with those measured in-situ during the similar period as when the images were taken. The difference in the in-situ measured and UAV image derived surface temperatures is the highest for gray colored concrete roof fabrics, at $17^{\circ}C$, and urethane fabrics show the lowest difference, at $0.3^{\circ}C$. The experiment power of the scatter plot of in-situ measured and UAV image derived surface temperatures was 63.75%, indicating that the correlation between the two is high. The surface fabrics with high temperature are metal roofs($48.9^{\circ}C$), urethane($43.4^{\circ}C$), and gray colored concrete roofs($42.9^{\circ}C$), and those with low temperature are barren land($30.2^{\circ}C$), area with trees and lawns($30.2^{\circ}C$), and white colored concrete roofs($34.9^{\circ}C$). These results show that accurate analysis of the thermal characteristics of surface fabrics is possible using UAV images. In future, it will be necessary to increase the usability of UAV images via comparison with in-situ data and linkage to satellite imagery.

Deterioration Diagnosis and Petrogenesis for Rock Properties of the Stone Lantern in the Gwanchoksa Temple, Nonsan, Korea (논산 관촉사 석등의 훼손도 진단 및 기원암의 성인적 해석)

  • Lee, Myeong Seong;Yi, Jeong Eun;Pyo, Su Hee;Song, Chi Young;Lee, Chan Hee
    • Journal of Conservation Science
    • /
    • v.17 s.17
    • /
    • pp.5-18
    • /
    • 2005
  • Rock materials of the Stone Lantern in the Gwanchoksa temple was composed of dark grey granodiorite. This Stone Lantern is partly structural distortion as S-shape, especially, rocks of the upper supports and under the roof materials were highly deterioration due to the surface exfoliation, and strong secondary contaminations owing to the discoloration by oxidation of inserted iron plates between the rock properties, and white grey to dark black contaminants along the rain path way. Rock surface of the Stone Lantern occurred as partly green patches because of coated by algae, lichen and moss. This biological problems are need for cleaning and treatments. The Stone Lantern have to be considered to conservation method that can reduce weathering factors with long-term monitoring about environmental change for structural stability, surface degradation and mechanical weathering. Materials of the Stone Lantern and basement rocks of the area are consisted of same petrogenetic granodiotite based on occurrences, petrological and geochemical characteristics.

  • PDF

Stability Assessment of Building Foundation over Abandoned Mines (채굴 지역에서의 건축물 기초 지반 안정성 평가 연구)

  • 권광수;박연준
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.174-181
    • /
    • 2001
  • The cavities created by underground mining, if remained unfilled, can cause ground settlement and surface subsidence as a result of relaxation and breakdown of the carven roof. Construction of structures above the underground mine cavity will have serious problems concerning both structural stability and safely even if the cavity is back-filled. This study was conducted to confirm the location and condition of the cavern as well as the state of the back-fill in A mine area using core logging and borehole camera. The bearing capacity and other mechanical properties of the ground were also measured by the standard penetration test(SPT). Obtained data were used to assess the stability of the ground and the structures to be built by numerical analysis using FLAC. The site investigation results showed that the mine cavities were filled with materials such as boulder and silty sand(SM by unified classification). Result of the numerical analyses indicated that constructing building structures on the over-lying ground above the filled cavities is secure against the potential problems such as surface subsidence and ground settlement.

  • PDF

Effect of Joint Persistence on the Formation of Tetrahedral Block Inside an Underground Opening (절리 영속성이 사각 단면 지하공동에서의 사면체 블록 형성에 끼치는 영향)

  • Cho, Taechin
    • Tunnel and Underground Space
    • /
    • v.26 no.6
    • /
    • pp.475-483
    • /
    • 2016
  • A numerical analysis model capable of predicting the shape, the size and the potentiality of collapse of tetrahedral blocks considering the persistence obtained from the field survey of joint distribution around the underground excavation surface has been developed. Numerical functions of analyzing both the exposed trace distribution on the excavation surface and the formation of tetrahedral block controlled by the extent of joint surface have been established and linked to the previously developed three dimensional deterministic block analysis model. To illustrate the reliability of advanced numerical model the case of underground excavation in which the collapse of rock block had practically taken place was studied. Representative orientations of joint sets was determined based on the joint distribution pattern observed on the excavation surfaces. The formation of block on the roof of underground opening was analyzed to unveil the potential tetrahedral block the shape of which was very similar to the collapsed rock block. Mechanisms of collapse process has been also analyzed by considering the three dimensional shape of tetrahedral block.

Characteristics of Temperature, Humidity and PPF Distribution by Covering Method and Environmental Control in Double Covering Greenhouse (이중피복 온실의 피복방법과 환경조절에 따른 온습도 및 광합성유효광량자속 분포 특성)

  • Lee, Hyun-Woo;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.21 no.1
    • /
    • pp.1-11
    • /
    • 2012
  • The objective of the present study is to provide data needed to find double covering method to be able to improve environment of temperature, humidity and PPF in tomato greenhouse. The distribution charts of temperature, humidity and PPF which were measured in environment control conditions such as thermal insulation, air heating, roof ventilation and air fog cooling in conventional and air inflated double layers greenhouses were drawn and analysed. The thermal insulation effect of the air inflated greenhouse was the same as that of conventional greenhouse because the temperature between insulation curtain and roof covering material was equal in heating season. The ventilation effect of the air inflated greenhouse was superior to the conventional greenhouse. The temperature distribution in the fog cooled greenhouse was uniform and the cooling effect was about $3.5^{\circ}C$. The condensation on the roof covering surface could be controlled by removing the moisture between insulation curtain and roof covering by using humidifier. The PPF of conventional greenhouse was more decreased than the air inflated greenhouse as time went by because the transmittance of conventional greenhouse declined by dust collected on the inside plastic film owing to rolling up and down operation for ventilation.

Analysing the effect of impervious cover management techniques on the reduction of runoff and pollutant loads (불투수면 저감기법의 유출량 및 오염부하량 저감 효과 분석)

  • Park, Hyung Seok;Choi, Hwan Gyu;Chung, Se Woong
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.1
    • /
    • pp.16-34
    • /
    • 2015
  • Impervious covers(IC) are artificial structures, such as driveways, sidewalks, building's roofs, and parking lots, through which water cannot infiltrate into the soil. IC is an environmental concern because the pavement materials seal the soil surface, decreasing rainwater infiltration and natural groundwater recharge, and consequently disturb the hydrological cycle in a watershed. Increase of IC in a watershed can cause more frequent flooding, higher flood peaks, groundwater drawdown, dry river, and decline of water quality and ecosystem health. There has been an increased public interest in the institutional adoption of LID(Low Impact Development) and GI(Green Infrastructure) techniques to address the adverse impact of IC. The objectives of this study were to construct the modeling site for a samll urban watershed with the Storm Water Management Model(SWMM), and to evaluate the effect of various LID techniques on the control of rainfall runoff processes and non-point pollutant load. The model was calibrated and validated using the field data collected during two flood events on July 17 and August 11, 2009, respectively, and applied to a complex area, where is consist of apartments, school, roads, park, etc. The LID techniques applied to the impervious area were decentralized rainwater management measures such as pervious cover and green roof. The results showed that the increase of perviousness land cover through LID applications decreases the runoff volume and pollutants loading during flood events. In particular, applications of pervious pavement for parking lots and sidewalk, green roof, and their combinations reduced the total volume of runoff by 15~61 % and non-point pollutant loads by TSS 22~72 %, BOD 23~71 %, COD 22~71 %, TN 15~79 %, TP 9~64 % in the study site.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).