• Title/Summary/Keyword: rolling fatigue

Search Result 229, Processing Time 0.023 seconds

Analysis of Rolling Contact fatigue for PM-High Speed Steel by X-ray Diffraction (X선회절에 의한 분말 고속도공구강의 구름접촉피로 해석)

  • 이한영;노정균;배종수;김용진
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.44-49
    • /
    • 2000
  • Recently, PM-high speed steel(PM-HSS) has reportedly been a good alternative material for rolling mill because of its superior peformance to conventional HSS. This paper has been aimed to investigate the possibility for application to rolling contact element for PM-HSS by X-ray diffraction technique. The X-ray elastic constant for PM-HSS has been found by X-ray diffraction during the four-point bending test. Residual stress and half-value breadth on the contact surface during rolling contact fatigue process by X-ray diffraction have also been measured. The result of this study shows that the application of X-ray diffraction technique to PM-HSS could be as possible alternative material as conventional HSS. Half-value breadth on rolling contact surface by X-ray diffraction is not changed during rolling contact fatigue process. On the other hand, the residual stress is changed. This suggests that dislocation reaction has been hardly occurred in rolling contact, depending on supersaturated carbon in PM-HSS.

  • PDF

The Influence of Indentation on Rolling Contact Fatigue (구름 접촉피로에 미치는 압혼의 영향)

  • 이동엽;이한영
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.74-79
    • /
    • 1997
  • Most of the results of recent research for the influence of indentation on rolling contact fatigue has been carried out with high strength material under the point contact. The plastic lug around the indent also has been known as a source of stress concentration. This study is undertaken to analyze the influence of indentation on rolling contact fatigue with low strength material under the line contact. The results in this study show that the plastic flow around indentation by rolling friction has a major influence, differed from the results of high strength material. And the change of residual stress and half-value breadth measured to the failure by X-ray diffraction can be identified to predict the rolling contact fatigue life of indented materials.

  • PDF

Analysis of the Rolling Contact Fatigue for Work Roll in Finishing Mill of Hot Strip Rolling (열간 연속판재 압연기의 작업롤 전동피로해석)

  • 배원병;박해두;송길호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.292-300
    • /
    • 1995
  • According to the number of cold-rolled coils, the amount of roll wear and thermal expansion, and roll gap profile were calculated, by using the actual data from the finishing mill. Also, based on those data, the calculations of the deflection, the flattening, and the contact pressure of vwork rolls and backup rolls were made respectively. Specially, in the calculation of contact pressure, the numerical results were obtained not only during the normal rolling, but also during the abnormal rolling, by modeling mathematically the dynamic impact force which occurs when the head section of the strip is threading through rolls. With those results the growth of the fatigue region and the fatigue damage of rolls were predicted. Also the optimum roll-grinding depth was determined to maximize the roll life.

A Study on the Strength Characteristics of Welded Joints in Aluminum Carbody of Rolling Stock (알루미늄 철도차량 차체 용접부의 강도 특성에 관한 연구)

  • Seo Sung-Il
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.35-40
    • /
    • 2005
  • In this paper, static and fatigue load tests for the specimens, components and carbody were carried out to investigate the strength of welded joints in aluminum rolling stock. Tensile test results showed that the static strength of welded joint for the heat-treated alloy is reduced significantly and fatigue strength data are scattered by the welding imperfections. Component and whole carbody fatigue test results showed agreements with the design fatigue strength standards for specimens of the same joint detail. Test results revealed that full penetration welding and strict management of welding procedure are crucial for securing the strength of welded joint in aluminum carbody.

Rolling Contact Fatigue and Residual Stress Properties of SAE52100 Steel by Ultrasonic Nano-Crystalline Surface Modification (UNSM) (초음파 나노표면 개질처리를 통한 베어링강의 회전접촉피로 및 잔류응력 특성에 대한 연구)

  • Lee, Changsoon;Park, Ingyu;Cho, Insik;Hong, Junghwa;Jhee, Taegu;Pyoun, Youngsik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.21 no.1
    • /
    • pp.10-19
    • /
    • 2008
  • To investigate the effect of ultrasonic nano-crystalline surface modification (UNSM) treatment on rolling contact fatigue and residual stress properties of bearing steels, this paper carried out a rolling contact fatigue test, measured residual stress and retained austenite, performed a wear test, observed microstructure, measured micro hardness, and analyzed surface topology. After the UNSM treatment, it was found that the surface became minute by over $100{\mu}m$. The micro surface hardness was changed from Hv730~740 of base material to Hv850~880 with about 20% improvement, and hardening depth was about 1.3 mm. The compressive residual stress was measured as high as -700~-900 MPa, and the quantity of retained austenite was reduced to 27% from 34%. The polymet RCF-6 ball type rolling contact fatigue test showed over 4 times longer fatigue lifetime after the UNSM treatment under 551 kgf load and 8,000 rpm. In addition, this paper observed the samples, which went through the rolling contact fatigue test, with OM and SEM, and it was found that the samples had a spalling phenomenon (the race way is decentralized) after the UNSM treatment. However, before the treatment, the samples had excessive spalling and complete exploration. Comparison of the test samples before and after the UNSM treatment showed a big difference in the fatigue lifetime, which seems to result from the complicated effects of micro particles, compressive residual stress, retained austenite, and surface topology.

Comparison of Rolling Element Loads and Stress-based Fatigue Life Predictions for Ball Bearings (볼 베어링의 전동체 기반 및 응력 기반 접촉 피로수명의 비교)

  • Kwak, Jae Seob;Park, Yong Whan;Kim, Chan Jung;Kim, Tae Wan
    • Tribology and Lubricants
    • /
    • v.36 no.6
    • /
    • pp.371-377
    • /
    • 2020
  • In In this study, we compared the results of a ball bearing life prediction model based on rolling element loads with the results of fatigue life prediction of ball bearings when a stress-based contact fatigue life prediction technique is applied to the ball bearing. We calculate the load acting on each rolling element by the external load of the bearing and apply the result to the Lundberg-Palmgren (LP) theory to calculate ball bearing life based on the rolling element. We also calculate stress-based ball bearing life through contact and fatigue analyses based on contact modeling of the ball and raceway while considering the fatigue test results of AISI 52100 steel. In stress-based life prediction, we use three high-cycle fatigue-determination equations that can predict the fatigue life when multi-axis proportional loads such as rolling-slide contact conditions are applied. These equations are derived from the stress invariant and critical plane methods and the mesoscopic approach. Life expectancy results are compared with those of the LP model. Results of the analysis indicated that the fatigue life was predicted to be lower in the order of the Crossland, Dang Van, and Matake models. Of the three, the Dang Van fatigue model was found to be the closest to the LP life.

Estimation of Fatigue Damage Due to Rolling Contact in a Railway Wheel Using FEM Analysis (유한요소법을 이용한 철도 차륜에서 구름 접촉으로 인한 피로손상 평가)

  • Lee, Sang-Hoon;Kim, Ho-Kyung
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.1-7
    • /
    • 2011
  • Fatigue damage on the train wheel surface was estimated by considering the effect of friction coefficient of rolling on the contact surface between the wheel and rail during operation. From FEM analys, the maximum Tresca stress was 550.7 MPa at a depth of 2.07 mm under the maximum contact pressure ($P_{max}$ = 894.3 MPa) between wheel and rail. The maximum stress continued to increase along with the increase in the frictional coefficient. The fatigue initiation lifetime of the wheel by the rolling contact was predicted using the Smith-Watson-Topper (SWT) equation and the maximum principal strain equation (${\varepsilon}$-N).

Work Roll Diagnosis by Roll Life Prediction Model in Hot Rolling Process (Roll 수명예측모델에 의한 열연작업롤 진단)

  • Bae, Yong-Hwan;Jang, Sam-Kyu;Lee, Seok-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.69-80
    • /
    • 1993
  • It is important to prevent roll failure in hot rolling process for reducing maintenance coat and production loss. Roll material and rolling conditions such as the roll force and torque have been intensively investigated to overcome the roll failures. In this study, a computer roll life prediction system under working condition is developed and evaluated on IBM-PC level. The system is composed and fatigue estimation models which are stress analysis, crack propagation, wear and fatigue estimation. Roll damage can be predicted by calculating the stress anplification, crack depth propagation and fatigue level in the roll using this computer model. The developed system is applied to a work roll in actual hot rolling process for reliability evaluation. Roll failures can be diagnosed and the propriety of current working condition can be determined through roll life prediction simulation.

  • PDF

A Study on the Corrosion and Fatigue of Structural Materials for Rolling Stock (철도차량 구조재료의 부식 및 피로 특성 연구)

  • Jang Se-Ky;Kim Yong-Ki;Coo Byeong-Choon
    • Journal of the Korean Society for Railway
    • /
    • v.8 no.4
    • /
    • pp.299-307
    • /
    • 2005
  • In general, structural integrity of rolling stock structures should last more than 25 years. During the lifetime corrosive degradation occurs. For structural design and diagnosis, quantitative relationship between corrosive degradation and variation of mechanical properties such as tensile strength and fatigue strength is needed. In this study, first of all we established the atmospheric corrosion test procedure. At regular intervals using specimens of SM490A and SS400 on the atmospheric corrosion test bed, we carried out tensile and fatigue tests. The fatigue strength decreases as the atmospheric corrosion period increases. In addition we studied the effect of post-weld heat treatment on the tensile and fatigue behaviour and performed electrochemical corrosion tests.