• Title/Summary/Keyword: rolling element

Search Result 477, Processing Time 0.028 seconds

Finite Element Analysis of Edge Fracture of Electrical Steel Strip in Reversible Cold Rolling Mill (가역식 냉간 압연기에서 전기강판의 에지 파단에 관한 유한요소해석)

  • Byon, Sang Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1619-1625
    • /
    • 2012
  • An electrical steel strip is commonly used as a core material in all types of electric transformers and motors. It is produced by a cold rolling process. In this paper, a damage-mechanics-based approach that predicts the edge fracture of an electrical steel strip during cold rolling is presented. We adopted the normal tensile stress criterion and the fracture energy method as a damage initiation criterion and a damage evolution scheme, respectively. We employed finite element analysis (FEA) to simulate crack initiation and propagation at the initial notch located at the edges of the strip. The material constants required in FEA were experimentally obtained by tensile tests using a standard and a notched sheet-type specimen. The results reveal that the edge crack was initiated at the entrance of the roll bite and that it rapidly evolved at the exit. The evolution length of the edge crack increased as the length of the initial notch as well as the front tension reel force of the strip increased.

Microstructure and Mechanical Properties of Mg-Li Powder by Hot Rolling Process

  • Choi, Jeong-Won;Kim, Yong-Ho;Kim, Jung-Han;Yoo, Hyo-Sang;Woo, Kee-Do;Kim, Ki-Beom;Son, Hyeon-Taek
    • Korean Journal of Materials Research
    • /
    • v.25 no.1
    • /
    • pp.32-36
    • /
    • 2015
  • Hot rolling of Mg-6Zn-0.6Zr-0.4Ag-0.2Ca-(0, 8 wt%)Li powder was conducted at the temperature of $300^{\circ}C$ by putting the powder into the Cu pipe. The microstructure and mechanical properties of the samples were observed. Mg-6Zn-0.6Zr-0.4Ag-0.2Ca without Li element was consisted of ${\alpha}$ phase and precipitates. The microstructure of the 8 wt%Li containing alloy consisted of two phases (${\alpha}$-Mg phase and ${\beta}$-Li phase). In addition, $Mg_2Zn_3Li$ was formed in 8%Li added Mg-6Zn-0.6Zr-0.4Ag-0.2Ca alloy. By addition of the Li element, the non-basal planes were expanded to the rolling direction, which was different from the based Mg alloy without Li. The tensile strength was gradually decreased from 357.1 MPa to 264 MPa with increasing Li addition from 0% to 8%Li. However, the elongation of the alloys was remarkably increased from 10 % to 21% by addition of the Li element to 8%. It is clearly considered that the non-basal texture and ${\beta}$ phase contribute to the increase of elongation and formability.

Development of form rolling technology for high precision worm using the rack dies of counter flow type (Counter Flow 방식의 랙 다이를 이용한 고정밀도 Worm 전조기술 개발)

  • 고대철;박준모;김병민
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1861-1864
    • /
    • 2003
  • The objective of this study is to suggest the form rolling technology to produce high precision worm. Rack dies and roll dies are usually used to roll parts with worm teeth. The form roiling processes of worm shaft used as automotive part using the rack dies of counter flow type and the roll dies are considered and simulated by the commercial finite element code, DEFORM-3D. It is also important to determine the initial blank diameter in form rolling because it affects the quality of thread. The calculation method of the initial blank diameter in form rolling is suggested and it is verified by FE-simulation. The experiments using rack dies and roll dies are performed under the same conditions as those of simulation. The results of simulation and experiment in this study show that the from rolling process of worm shaft using the rack dies is decidedly superior to that using rolling dies from the aspect of the surface roughness and the profile of worm.

  • PDF

A Numerical Analysis of H Shape Rolling (H 형강압연의 수치해석)

  • Park, Jong-Jin;Jeong, Nak-Joon;Kim, Jae-Joo
    • Transactions of Materials Processing
    • /
    • v.4 no.4
    • /
    • pp.375-389
    • /
    • 1995
  • In H shape rolling, accurate predictions of deformation and temperature distribution in a billet are quite important because they are the main factors in determining roll calibers and roll pass schedules. Many researches have been performed to achieve the predictions, but most of them are limited to single pass or isothermal assumptions. In the present investigation, it is attempted to develop a method to predict the deformation and temperature distributions which is applicable to a complete rolling process that usually consists of several rollings under different rolls for a period of time. The method works by coupling two analyses : one is an approximate analysis for temperature distribution prediction and the other is the slab-FEM hybrid analysis for deformation prediction. The method is applied to analyze a "H" shape rolling process consisting of nine passes under four different rolls. In the present paper, basic ideas of the method are presented. Also, shapes of cross sections, strain and temperature distributions, roll separating force and roll torque predicted by the method are discussed.

  • PDF

Analysis of Flaking Strength by Rolling Friction of ADI (구상흑연주철의 구름마찰에 대한 강도해석)

  • Lee, Han-Young
    • Journal of Korea Foundry Society
    • /
    • v.14 no.3
    • /
    • pp.267-273
    • /
    • 1994
  • The structure of austempered ductile cast iron, called ADI, consists of graphite, retained austenite, and bainite. The bainite component of them is considered a useful structure for exriting materials for roll of rolling mill. Therefore, the ADI can be considered applicable to material for rolling contact element. The diverse tests, such as rolling contact friction test, impact test, and X-ray reflection test, were carried out to investigate the possibility of it`s application. The result of this study showed that the expected fact was confirmed. The specimen showed that the best performance had the structure of the low bainite containing the stable retained austenite of about 20%.

  • PDF

Prediction of Roll Force in Hot Grooveless Rolling of Billet (열간 빌렛의 평롤 압연시 압연하중 예측)

  • Byon, S.M.;Park, H.S.;Jeon, E.C.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1379-1382
    • /
    • 2007
  • In this paper, we present a simplified analytic approach for the prediction of roll force to be applicable to the grooveless rolling. The approach is based on the deformation shape deduced from physical considerations and employs the assumption that the deformation homogeneously occurs in three directions. Strain and strain rate are calculated by the geometric relationships between those components and the prescribed deformation functions. Then, stress components are obtained from the Levy-Mises' flow rule. By integrating the stress components along the rolling direction, roll force are finally obtained. The prediction accuracy of the proposed model is examined through comparison with results obtained from the finite element analysis.

  • PDF

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Effect of Roll Gap Change of Oval Pass on Interfacial Slip of Workpiece and Roll Pressure in Round-Oval-Round Pass Rolling Sequence

  • Lee, Youngseog;Bayoumi, Laila-Salah;Kim, Hong-Joon
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.492-500
    • /
    • 2002
  • This paper presents a study of the effect of varying the roll gap of oval pass in round-oval-round pass sequence on the interracial slip of workpiece, entrance and exit velocities, stresses and roll load that the workpiece experiences during rolling, by applying analytical method, finite element simulation and verification through hot bar rolling tests. The results have shown that the roll gap variation of oval pass affects the interfacial slip of workpiece along the groove contact and the specific roll pressure. The optimum conditions in terms of minimum interfacial slip and minimum specific roll pressure, which might influence the maximum groove life, is obtained when the subsequent round pass is completely filled.

Thermal Model of High-Speed Spindle Units

  • Zver, Igor-Alexeevich;Eun, In-Ung;Chung, Won-Jee;Lee, Choon-Man
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.668-678
    • /
    • 2003
  • For the purpose to facilitate development of high-speed spindle units (SUs) running on rolling bearings, we have developed a beam element model, algorithms, and software for computer analysis of thermal characteristics of SUs. The thermal model incorporates a model of heat generation in rolling bearings, a model of heat transfer from bearings, and models for estimation of temperature and temperature deformations of SU elements. We have carried out experimental test and made quantitative evaluation of the effect of operation conditions on friction and thermal characteristics of the SUs of grinding and turning machines of typical structures. It is found out that the operation conditions make stronger effect on SU temperatures when rpm increases. A comparison between the results of analysis and experiment proves their good mutual correspondence and allows us to recommend application of the models and software developed for design and research of high-speed SUs running on rolling bearings.