• Title/Summary/Keyword: rolling

Search Result 3,717, Processing Time 0.045 seconds

Evolution of Strain States and Microstructures During Three-roll Screw Rolling of Copper Rods (Three-roll Screw Rolling 공정 시 동봉재의 변형상태와 미세조직의 발달)

  • Kim, S.H.;Park, E.S.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2008
  • In order to investigate the evolution of strain states during screw rolling, the samples of copper rod were rolled in a three-roll screw rolling mill. Microstructure observations and hardness measurements were carried out for examining the deformation history during screw rolling. The finite element method(FEM) was employed to calculate the evolution of strain states during screw rolling. The strain state in the roll gap is quite inhomogeneous through the rod thickness layers. It turned out that shear strain gradients through the thickness layers are reduced by applying a higher reduction.

Modeling and Controlling of Surface Defect Initiation and Growth in Groove Rolling (공형 압연에서의 표면흠 성장 모델링 및 제어 방법 연구)

  • Na, D.H.;Lee, Y.
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.607-612
    • /
    • 2008
  • The groove rolling is a process that transforms the bloom or billet into a shape with circular section through a series of rolling. Inhibition of surface defect generation in groove rolling is a matter of great importance and therefore many research groups proposed a lot of models to find the location of surface defect initiation. In this study, we propose a model for maximum shear stress ratio over equivalent strain to catch the location of surface defect onset. This model is coupled with element removing method and applied to box groove rolling of POSCO No.3 Rod Mill. Results show that proposed model in this study can find the location of surface defect initiation during groove rolling when finite element analysis results is compared with experiments. The proposed criterion has been applied successfully to design roll grooves which inhibit the generation of surface defect.

Seismic response of spring-damper-rolling systems with concave friction distribution

  • Wei, Biao;Wang, Peng;He, Xuhui;Jiang, Lizhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • The uneven distribution of rolling friction coefficient may lead to great uncertainty in the structural seismic isolation performance. This paper attempts to improve the isolation performance of a spring-damper-rolling isolation system by artificially making the uneven friction distribution to be concave. The rolling friction coefficient gradually increases when the isolator rolls away from the original position during an earthquake. After the spring-damper-rolling isolation system under different ground motions was calculated by a numerical analysis method, the system obtained more regular results than that of random uneven friction distributions. Results shows that the concave friction distribution can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the spring-damper-rolling isolation system in comparison with the random uneven distribution of rolling friction coefficient, and always lead to a relatively acceptable isolation state even if the actual earthquake significantly differs from the design earthquake.

Through-Thickness Variation of Strain and Microstructure of AA5052 with Rolling Conditions During High Speed Hot Rolling (고속열간압연시 압연조건에 따른 AA5052의 두께방향으로의 변형량 및 미세조직 변화)

  • Lee, Seong-Hee
    • Korean Journal of Materials Research
    • /
    • v.19 no.5
    • /
    • pp.265-269
    • /
    • 2009
  • The through-thickness variations of strain and microstructure during high-speed hot rolled 5052 aluminum alloy sheet were investigated. The specimens were rolled at temperature ranges from 410 to $560^{\circ}C$ at a rolling speed of 15 m/s without lubrication and quenched into water at an interval of 30 ms after rolling. The redundant shear strain induced by high friction between rolls and the aluminum sheet was increased largely beneath the surface at a rolling reduction above 50%. Dynamic recrystallization occurred in the surface regions of the specimen rolled under conditions of high temperatures or high rolling reductions.

Effect of rolling parameters on the evolution of texture during asymmetrical cold rolling of aluminum sheets (알루미늄 판재의 비대칭 냉간압연 시 집합조직 발달에 미치는 압연변수의 영향)

  • Kang, H.G.;Han, Y.H.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.84-86
    • /
    • 2007
  • Aluminum sheets were asymmetrically cold rolled without lubrication by using different roll velocities of upper and lower rolls in order to intensify the shear deformation. During asymmetrical cold rolling of aluminum sheets, a reduction per a rolling pass, initial sheet thickness, roll diameter, roll velocity ratio were varied to investigate the effect of rolling parameters. The formation of through thickness shear texture was related to the ratio of the contact length between the roll and sample($l_c$) to the sheet thickness(d). The strain states associated with asymmetrical rolling were investigated by the finite element method (FEM) simulation. FEM results indicated that the evolution of deformation texture in a thickness layer is strongly governed by integrated values of strain rates $\dot{\varepsilon}_{13}$ and $\dot{\varepsilon}_{11}$ along the streamline in the roll gap.

  • PDF

An Experimental Study on the Development of the Anti-Rolling Control System for a Ship (선체 횡동요 방지 장치 개발을 위한 실험적 연구)

  • 김영복;변정환;양주호
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.43-48
    • /
    • 2000
  • In this paper, an actively controlled anti-rolling system is considered to reduce the rolling motion of the ship. In this control system, a small auxiliary mass is installed on the upper area of the ship, and actuator us connected between the auxiliary mass and a ship. The actuator reacts against the auxiliary mass, applying inertial control forces to the ship to reduce the rolling motion in the desired manner. In this paper, we apply the PID controller to design the anti-rolling control system for the controlled ship. And the experimental result shows that the desirable control performance is achieved.

  • PDF

Rolling Force Prediction in Cold rolling Mill using Neural Networks (신경망을 이용한 냉연 압하력 예측)

  • Cho, Yong-Jung;Cho, Sung-Zoon
    • IE interfaces
    • /
    • v.9 no.3
    • /
    • pp.298-305
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. Most of rolling processes use mathematical models to predict rolling force which is very important to decide the resultant thickness of a coil. In general, these mathematical models are not flexible for variant coil types and cannot handle various elements which is practically important to decide accurate rolling force. A corrective neural network is proposed to improve the accuracy of rolling force prediction. Additional variables-composition of the coil, coiling temperature and working roll parameters-are fed to the network. The model uses an MLP with BP to predict a corrective coefficient. The test results using 1,586 process data collected at POSCO in early 1995 show that the proposed model reduced the prediction error by 30% on average.

  • PDF

A Study on Development of Setup Model for Thickness Control in Tandem Cold Rolling Mill (연속냉간압연의 두께제어 모델 개발에 관한 연구)

  • 손준식;김일수;권욱현;최승갑;박철재;이덕만
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.5
    • /
    • pp.96-103
    • /
    • 2001
  • The quality requirements for thickness accuracy in cold rolling continue to become more stringent, particularly in response to exacting design specification from automotive customers. One of the major impacts from the tighter tolerance level is more unusable product on the head end and tail end of tandem mill coils when the mill is in transition to or from steady state rolling condition. A strip thickness control system for a tandem cold steel rolling mills is composed with blocked non-interacting controller and controllers for strip thickness and tension control of each rolling stands. An intelligent mathematical model included an elastic deformation of strip has been developed and applied to the field in order to predict the rolling force. The simulated results showed that the effect of elastic recovery should be included the model, even if the effect of elastic compression was not important.

  • PDF

Diagnosis of Rolling Mill Using Wavelet (Wavelet을 이용한 압연기 진단)

  • 김이곤;김창원;송길호
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.597-608
    • /
    • 1998
  • A diagnosis system that provides early warnings regarding machine malfunction is very important for rolling mill so as to avoid great losses resulting from unexpected shutdown of the production line. But it is very difficult to provide early warnings in rolling mill. Because dynamics of rolling mill is non-linear. This paper proposes a new method for diagnosis of rolling mill using wavelet to solve this problem. Proposed method that measures the vibration signals of rolling mill on-line and analyze it using wavelet to acquire pattern datas. And we design a nero-fuzzy model that diagnose a rolling mill using this data. Validity of the new method is asserted by numerical simulation.

  • PDF

Rolling Contact Fatigue of Hot-forged Steels out of Prealloyed Powders and Powder Blend

  • Dorofeyev, Vladimir;Sviridova, Anna
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.559-560
    • /
    • 2006
  • Powder forging is used for heavy-loaded parts (rings of rolling-contact bearings, gears etc.) production. Rolling contact fatigue is material property values of which characterize possibility of practical utilization of such parts. Rolling contact fatigue of some steels obtained out of prealloyed powders Astaloy CrM, Atomet 4601, Atomet 4901 and powder blends iron-carbon-nickel by hot forging is studied in the present paper. Effect of various kinds of heat and thermomechanical treatment on rolling contact fatigue is determined. Thermomechanical treatment provides optimal values of rolling contact fatigue. In this case steel structure contains up to 40% of retained metastable austenite which is transformed to martensite on trials. Thus typically crack is generated on residual pores and non-metallic inclusions instead of martensite zones in wrought steels.

  • PDF