• Title/Summary/Keyword: rolled sheet

Search Result 248, Processing Time 0.028 seconds

Temperature and Dependence of the Microhardness of Rhenium Sheets (리늄판의 미세경도 온도 및 응력의존성)

  • Yun, Seok-Yeong;Lagerlof, K.P.D.
    • Korean Journal of Materials Research
    • /
    • v.10 no.5
    • /
    • pp.335-342
    • /
    • 2000
  • The microhardness of rhenium sheets was determined as a function of indentation load and temperature. The temperature dependence of the microhardness between room temperatures and $1000 ^{\circ}C$was studied using a hot microhardness tester equipped with a Vickers indenter. The load dependence of the microhardness was investigated using oth a Vickers and a Knoop indenter. The indentation size effect (ISE) was well explained using the normalized Meyers law. The hardness of the annealed rhenium sheet approached that of the as-rolled sheets at large indentation loads because of work-hardening under the indenter during indentation. The hardness at zero load(obtained from extrapolation of the load dependence of the hardness) suggested that the hardness is controlled by two different mech-anisms having different thermal activation. At low temperature the activation energy for the mechanism controlling the hardness was approximately 0.02 eV , Whereas at higher temperatures that was approximately 0.15eV. The tranisi-tion temperature between the two different controlling mechanisms was about $250^{\circ}C$.

  • PDF

Detection of Enterotoxins in Staphylococcus aureus Isolated from Clinical Specimens and Kimbap Using Multiplex PCR

  • Kim, Jong-Bae;Kim, Hong;Jin, Hyun-Seok;Kim, Young-Sam;Kim, Keun-Sung;Kang, Yun-Sook;Park, Jong-Seok;Lee, Dong-Ha;Woo, Gun-Jon
    • Biomedical Science Letters
    • /
    • v.7 no.2
    • /
    • pp.85-89
    • /
    • 2001
  • Many Staphylococcus aureus strains produce enterotoxins causing food poisoning. Staphylococcal enterotoxins are classified by serological criteria into five major groups - subtype A to E. It is difficult, time-consuming, and expensive to detect staphylococcal enterotoxins in the clinical laboratory. In this study, we fried to detect the enterotoxin genes of Staphylococcus aureus strains isolated from clinical specimens and Kimbap - rice rolled in a sheet of laver - using multiplex PCR technique. A total of 77 strains of Staphylococcus aureus from clinical specimens and 78 strains from Kimbap were isolated. Among clinical isolates of S. aureus, 60 strains (78.0%) were identified as producing enterotoxins. A total offs strains (91.6%) in the 60 staphylococcal enterotoxin producing strains were enterotoxin subtype C. In case of kimbap: 43 (55.1%) strains were detected to produce enterotoxins and 39 (90.6%) enterotoxin producing strains were subtype A.

  • PDF

Preparation of Water-Repellent Coating Solutions from Tetraethoxysilane and Methyltriethoxysilane by Sol-Gel Method (졸-겔법에 의해 Tetraethoxysilane과 Methyltrimethoxysilane으로부터 발수코팅제 제조)

  • Kim, Dong Gu;Lee, Byung Wha;Song, Ki Chang
    • Korean Chemical Engineering Research
    • /
    • v.56 no.3
    • /
    • pp.327-334
    • /
    • 2018
  • Water-repellent coating solutions were prepared by sol-gel method using tetraethoxysilane (TEOS) and methyltrimethoxysilane (MTMS) as precursors. The solutions were spin-coated on a cold-rolled steel sheet and thermally cured to prepare a non-fluorine water-repellent coating films. The effects of molar ratios of MTMS/TEOS, water concentration and ammonia concentration on the hydrophobic properties of the coating films were studied. The contact angle of water on coating films prepared by varying the molar ratio of MTMS/TEOS to 1~20 showed a maximum value of $108^{\circ}$ when the MTMS/TEOS molar ratio was 10. With increasing water content, the coating films showed the larger contact angles and the better the water repellency. As the amount of ammonia added was increased, the contact angles of coating films were increased, showing the better the water repellency. It is considered that the larger the amount of ammonia added, the larger the size of the silica particles generated, which increases the surface roughness of the silica particles, thereby increasing the water repellency.

Preparation and Characterization for Carbon Composite Gas Diffusion Layer on Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지에서 탄소복합 기체확산층의 제조와 특성분석)

  • Shim, Joong-Pyo;Han, Choon-Soo;Sun, Ho-Jung;Park, Gyung-Se;Lee, Ji-Jung;Lee, Hong-Ki
    • Journal of Hydrogen and New Energy
    • /
    • v.23 no.1
    • /
    • pp.34-42
    • /
    • 2012
  • Gas diffusion layers (GDLs) of carbon composite type in polymer electrolyte fuel cells were prepared by simple and cheap manufacturing process. To obtain the carbon composite GDLs, carbon black with polymer binder was mixed in solvent, rolled to make sheet, and finally heat-treated at $340^{\circ}C$. The performance of fuel cell using composite GDLs was changed by PTFE content. The physical properties of composite GDLs for pore, conductivity and air permeability were analyzed to compare with the variation of fuel cell performance. The conductivity of composite GDLs was very similar to carbon paper as commercial GDL but pore properties and air flux were considerably different. The porosity, PTFE content and conductivity for composite GDLs did not have an influence on the cell performance much. The increase of pore diameter and air flux led to enhance cell performance.

Performance Test of Low Temperature Regeneration Polymeric Desiccant Rotor (고분자 제습로터의 저온재생 성능시험)

  • Lee, Jin-Kyo;Lee, Dae-Young;Oh, Myung-Do
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.629-632
    • /
    • 2009
  • The polymeric desiccant rotor is made from the super absorbent polymer by ion modification. The moisture sorption capacity of the super desiccant polymer(SDP) is 4 to 5 times larger than those of common desiccant meterials such as silica gel or zeolite. It is also known that SDP can be regenerated even at the relatively low temperature. To fabricate the desiccant rotor, firstly the SDP was laminated by coating the SDP on polyethylene sheet. Then corrugated and rolled up into a rotor. The diameter, the depth, the dimensions of the corrugated channel, etc. were pre-determined from numerical simulation on the heat and mass transfer in the desiccant rotor. The dehumidification performance was tested in a climate chamber. The relevant tests were carried out at the process air inlet temperature of $32^{\circ}C$, the regeneration air inlet temperature of $60^{\circ}C$ and the inlet dew-point temperature of both the process air and the regeneration air of $18.5^{\circ}C$, when the rotation period is long, the moisture sorption is not effective. In the desiccant rotor developed in this study, the optimum rotation period is found about 350s at the regeneration temperature of $60^{\circ}C$. It was found from further experiments that the optimum rotation tends to decreases as the regeneration temperature increases. Meanwhile, the outlet temperature of the process air deceases monotonically as the rotation period increases.

  • PDF

고밀도 알루미늄 박막 코팅과 특성 분석

  • Yang, Ji-Hun;Jeong, Jae-In;Jang, Seung-Hyeon;Park, Hye-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.45-45
    • /
    • 2011
  • 알루미늄과 그 합금은 내부식성(corrosion resistance)이 좋고, 밀도가 낮아 높은 연료소비 효율을 필요로 하는 항공기와 자동차 같은 운송수단의 내-외장 소재로 사용되고 있다. 또한 알루미늄의 높은 내부식성을 이용하여 철강소재의 부식을 방지하는 보호막으로도 폭 넓게 사용된다. 물리기상증착(physical vapor deposition)으로 알루미늄을 코팅하면 박막 성장 초기단계에서 핵(nucleus)을 형성하고, 형성된 핵을 중심으로 주상 구조(columnar structure)로 박막이 성장하는 것이 일반적으로 알려진 방식이다. 주상 구조의 알루미늄 박막은 주상정과 주상정 사이에 필연적으로 공극(pore)이 존재하게 되어 부식을 일으키는 물질이 박막으로 침투하게 되고, 부식 물질과 모재가 반응하여 공식(pitting corrosion)이 발생한다. 본 연구에서는 스퍼터링(magnetron sputtering)을 이용하여 치밀한 조직을 갖는 알루미늄 박막을 코팅할 수 있는 공정을 개발하고, 치밀한 알루미늄 조직이 내부식성에 어떠한 영향을 미치는지 평가하였다. 기판은 냉연강판(cold rolled steel sheet)이 사용되었으며, 알루미늄 타겟의 순도는 99.999%, 크기는 직경 4"이었다. 냉연강판은 진공용기(vacuum chamber)에 장착하기 전에 계면활성제를 이용하여 표면에 존재하는 기름성분을 제거하였으며, 진공용기에 장착한 후에는 아르곤 가스를 이용하여 발생시킨 글로우 방전으로 표면에 존재하는 산화물을 제거하였다. 알루미늄 박막의 조직에 영향을 미치는 공정변수를 확인하기 위해서 스퍼터링 파워, 공정 온도, 공정 압력, 외부 자기장 세기 등의 공정 조건을 변화시켜 코팅을 실시하였다. 실험을 통해서 얻어진 최적 조건으로 알루미늄을 코팅할 경우, 알루미늄 bulk의 밀도와 비교하여 약 94.7%의 밀도를 갖는 알루미늄 박막을 코팅할 수 있었다. 알루미늄 박막이 약 3 ${\mu}$m의 두께로 코팅된 냉연강판의 내부식성 평가(salt spray test, 5% NaCl) 결과, 평가를 시작한 후 72시간 후에도 적청이 발생하지 않았다.

  • PDF

Effect of rolling parameters on soft-magnetic properties during hot rolling of Fe-based soft magnetic alloy powders (Fe계 연자성 합금 분말의 고온 압연시 자성특성에 미치는 압연인자들의 영향)

  • Kim, H.J.;H.Lee, J.;Lee, S.H.;Park, E.S.;Huh, M.Y.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.266-269
    • /
    • 2009
  • Iron-based soft magnetic materials are widely used as cores, such as transformer transformers, motors, and generators. Reducing losses generated from soft magnetic materials of these applications results in improving energy conversion efficiency. Recently, the new P/M soft magnetic material realized an energy loss of 68 W/kg with a drive magnetic flux of 1 T, at a frequency of 1 kHz, rivaling general-purpose electromagnetic steel sheet in the low frequency range of 200 Hz to 1 kHz. In this research, the effect of rolling parameters on soft magnetic properties of Fe-based powder cores was investigated. The Fe-based soft magnetic plates were produced by the hot powder rolling process after both pure Fe and Fe-4%Si powders were canned, evacuated, and sealed in Cu can. The soft magnetic properties such as energy loss and coercive power were measured by B-H curve analyzer. The soft magnetic properties of rolled sheets were measured under conditions of a magnetic flux density of 1 T at a frequency of 200 kHz. It was found that rolling reduction ratio is the most effective parameter on reducing both energy loss and coercivity because of increasing aspect ratio with reduction ratio. By increasing aspect ratio from 1 to 9 through hot rolling of pure Fe powder, a significant loss reduction of one-third that of SPS sample was achieved.

  • PDF

Influence of Heat Treatment and Magnesium Content on Corrosion Resistance of Al-Mg Coated Steel Sheet (PVD법에 의해 제작한 Al-Mg 코팅 강판의 내식성에 미치는 Mg 함량 및 열처리의 영향)

  • Kang, Jae Wook;Park, Jun-Mu;Hwang, Sung-Hwa;Lee, Seung-Hyo;Moon, Kyung-Man;Lee, Myeong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.2
    • /
    • pp.202-210
    • /
    • 2016
  • This study was intended to investigate the effect of the amount of magnesium addition and heat treatment in the Al-Mg coating film in order to improve corrosion resistance of aluminum coating. Al-Mg alloy films were deposited on cold rolled steel by physical vapor deposition sputtering method. Heat treatment was fulfilled in an nitrogen atmosphere at the temperature of $400^{\circ}C$ for 10 min. The morphology was observed by SEM, component and phase of the deposited films were investigated by using GDLS and XRD, respectively. The corrosion behaviors of Al-Mg films were estimated by exposing salt spray test at 5 wt.% NaCl solution and measuring polarization curves in deaerated 3 wt.% NaCl solution. With the increase of magnesium content, the morphology of the deposited Al-Mg films changed from columnar to featureless structure and particle size was became fine. The x-ray diffraction data for deposited Al-Mg films showed only pure Al peaks. However, Al-Mg alloy peaks such as $Al_3Mg_2$ and $Al_{12}Mg_{17}$ were formed after heat treatment. All the sputtered Al-Mg films obviously showed good corrosion resistance compared with aluminum and zinc films. And corrosion resistance of Al-Mg film was increased after heat treatment.

Technology of Non-destructive Stress Measurement in Spot Welded Joint using ESPI Method (ESPI법에 의한 스폿 용접부의 비파괴적 응력측정 기술)

  • 김덕중;국정한;오세용;김봉중;유원일;김영호
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.1 no.1
    • /
    • pp.23-26
    • /
    • 2000
  • In spot welded joint. Electronic Speckle Pattern Interferometry(ESPI) method using the Model 95 Ar laser a video system and an image processor was applied to measure the stress Unlike traditional strain gauges or Moire method, ESPI method has no special surface preparation or attachments and can be measured in-plane displacement with non-contact and real time. In this experiment, specimens are loaded in parallel with a load cell. The specimens are made of the cold rolled steel sheet with 1mm thickness, are attached strain. gauges. This study Provides an example of how ESPI has been used to measure stress and strain inspecimen. The results measured by ESPI are compared with the data which was measured by strain gauge method under tensile testing.

  • PDF

Study on the deposition rate and vapor distribution of Al films prepared by vacuum evaporation and arc-induced ion plating (증착방법에 따른 Al 피막의 증착율 및 증기분포에 관한 연구)

  • 정재인;정우철;손영호;이득진;박성렬
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.207-215
    • /
    • 2000
  • Al films on cold-rolled steel sheet have been prepared by vacuum evaporation and arc-induced ion plating, respectively, and the evaporation rate and vapor distribution (thickness distribution over the substrate) have been investigated according to deposition conditions. The arc-induced ion plating (AIIP) method have been employed, which makes use of arc-like discharge current induced by ionization electrode located near the evaporation source. The AIIP takes advantage of high ionization rate compared with conventional ion plating, and can be carried out at low pressure of less than $10^{-4}$ torr. Very high evaporation rate of more than 2.0 mu\textrm{m}$/min could be achieved for Al evaporation using alumina liner by electron beam evaporation. The geometry factor n for the $cos^{n/\phi}$ vapor distribution, which affects the thickness distribution of films at the substrate turned out to be around 1 for vacuum evaporation, while it features around 2 or higher for ion plating. For the ion plated films, it has been found that the ionization condition and substrate bias are the main parameters to affect the thickness distribution of the films.

  • PDF