• 제목/요약/키워드: roll-to-roll printing method

검색결과 46건 처리시간 0.03초

인쇄전자 기술을 이용한 유기 태양전지 기술 개발 (Development of the Organic Solar Cell Technology using Printed Electronics)

  • 김정수;유종수;윤성만;조정대;김동수
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.113.1-113.1
    • /
    • 2011
  • PEMS (printed electro-mechanical system) is fabricated by means of various printing technologies. Passive and active compo-nents in 2D or 3D such as conducting lines, resistors, capacitors, inductors and TFT(Thin Film Transistor), which are printed withfunctional materials, can be classified in this category. And the issue of PEMS is applied to a R2R process in the manu-facturing process. In many electro-devices, the vacuum process is used as the manufacturing process. However, the vacuum process has a problem, it is difficult to apply to a continuous process such as a R2R(roll to roll) printing process. In this paper, we propose an ESD (electro static deposition) printing process has been used to apply an organic solar cell of thin film forming. ESD is a method of liquid atomization by electrical forces, an electrostatic atomizer sprays micro-drops from the solution injected into the capillary with electrostatic force generated by electric potential of about several tens kV. ESD method is usable in the thin film coating process of organic materials and continuous process as a R2R manufacturing process. Therefore, we experiment the thin films forming of PEDOT:PSS layer and active layer which consist of the P3HT:PCBM. The organic solar cell based on a P3HT/PCBM active layer and a PEDOT:PSS electron blocking layer prepared from ESD method shows solar-to-electrical conversion efficiency of 1.42% at AM 1.5G 1sun light illumination, while 1.86% efficiency is observed when the ESD deposition of P3HT/PCBM is performed on a spin-coated PEDOT:PSS layer.

  • PDF

마이크로프로세서를 기반으로 한 섬유공정에서의 장력제어 시스템 설계 (Design of Tension Control System in a Textile Process based on Microprocessor)

  • 여희주
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1381-1387
    • /
    • 2007
  • 현재까지 다양한 연속적인 공정시스템은 섬유, 제지 및 인쇄 등 많은 산업응용 분야에서 사용되고 있다. 이러한 응용분야에서 공정처리를 받고 있는 제품에 가해지는 장력은 원료의 공급속도와 생산되는 제품의 방출 속도간의 속도차에 의해 변화될 수 있다 특히, 섬유공정에서 공급속도와 방출 속도간의 속도차나 관성효과에 의해 발생되는 장력변동은 제품의 품질을 저하시킬 수 있다. 따라서 섬유공정에서 이러한 요인들에 의해 발생되는 장력 변동을 적절한 방법에 의해 보상하는 것은 매우 중요한 문제이다. 본 논문에서는 이러한 문제를 해결하기 위하여 섬유공정에서 많이 사용되고 있는 환편기 시스템에서의 장력제어 문제를 다루고자 한다. 먼저 일반적인 연속공정의 권취 메커니즘에 대한 장력 관계식을 모델링한다. 다음은 환편기 시스템에서 풀림롤과 감김롤을 효율적으로 구동하기 위하여 풀림롤과 감김롤간의 속도차와 관성특성을 고려한 새로운 장력제어 방법을 제시한다. 다양한 실험을 통하여 제안된 장력제어 방법이 주어진 환편기 시스템의 공정구간에서의 장력제어 성능을 향상시킬 수 있음을 보인다.

  • PDF

그라비어 방식을 이용한 전극 인쇄 시 전도성 잉크의 물성이 인쇄성에 미치는 영향 (Effect of Properties of Conductive Ink on Printability of Electrode Patterning by Gravure Printing Method)

  • 남기상;윤성만;이승현;김동수;김충환
    • 한국정밀공학회지
    • /
    • 제30권6호
    • /
    • pp.573-577
    • /
    • 2013
  • The one of the most important issue in roll-to-roll gravure printing is increase of ink transfer ratio or printability. As the result of high ink transfer ratio or printability, we can assess the quality of the printed patterns. The rheological properties are the important factors for the printability of electrodes patterning. In this study, the rheological properties of conductive ink are controlled by adding the solvent. The inks with different rheological properties are used for the patterning of the electrodes of $100{\mu}m$ by gravure printing equipment. The various printing speed, which also affect the rheological properties of conductive ink, is applied and the printed patterns are compared for their width and aspect ratio. Decreasing in the ink viscosity as well as increasing in the printing speed decreases the printability in gravure patterning, which shows that the rheological properties are important factors for the printability of gravure patterning.

잉크에 부분적으로 잠긴 회전하는 롤 주위의 액막 유동 해석 (Analysis of Film Flow Around Rotating Roller Partially Immersed in Ink)

  • 유승환;엄석기;이관수
    • 대한기계학회논문집B
    • /
    • 제31권12호
    • /
    • pp.1017-1023
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink properties (viscosity, surface tension), operating condition (roller rotating speed, initial immersed angle) on the film thickness. The result indicates that the film thickness has a strong dependency on the rotating speed, while the surface tension has negligible effect.

잉크에 부분적으로 잠겨 회전하는 롤 주위의 액막 유동 해석 (The analysis of film flow around rotating roller partially immersed in ink)

  • 유승환;강수진;이관수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2279-2284
    • /
    • 2007
  • This study is intended to analyze the effect of thin ink-film thickness around rotating printing roll on the printing quality in the gravure printing process which is used for making electronics circuit like a RFID tag with a conductive ink. The present work numerically estimates the film thickness around rotating roller partially immersed in ink, for which the volume of fluid (VOF) method was adopted to figure out the film formation process around rotating roller. Parameter studies were performed to compare the effect of ink viscosity, surface tension, roller rotating speed, immersed angle on the film thickness. The result indicates that the film thickness has a strong dependency on the fluid viscosity, while the surface tension has negligible effect.

  • PDF

이종 금속이 코팅된 금속소재를 이용한 인쇄전자소자용 선폭 10㎛급 패턴 가공 (10㎛-wide Pattern Engraving using Metal Specimens coated with a heterogeneous metal for Printed Electronics)

  • 손현기;카오 후안 빈;조용권;신동식;최지연
    • 한국레이저가공학회지
    • /
    • 제17권4호
    • /
    • pp.20-23
    • /
    • 2014
  • In printed electronics, printing rolls are used to transfer electronic ink onto a flexible substrate. Generally printing rolls are patterned in microscale by the indirect laser method. Since based on the wet etch process, the indirect method is neither environment-friendly nor suitable for making a printing roll with patterns narrower than $20{\mu}m$. In this paper, we have directly engraved micro-patterns into a Zn-coated metal specimens using a picosecond laser in order both to engrave $10{\mu}m$-wide patterns and to improve the pattern profile. Experiments showed that it is possible to engrave $10{\mu}m$-wide patterns with an a rectangular-shaped profile which is necessary for the dimensionally accurate printing.

  • PDF

The effect of film morphology by bar-coating process for large area perovskite solar modules

  • Ju, Yeonkyeong;Kim, Byeong Jo;Lee, Sang Myeong;Yoon, Jungjin;Jung, Hyun Suk
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.416-416
    • /
    • 2016
  • Organic-inorganic metal halide perovskite solar cells have received attention because it has a number of advantages with excellent light harvesting, high carrier mobility, and facile solution processability and also recorded recently power conversion efficiency (PCEs) of over 20%. The major issue on perovskite solar cells have been reached the limit of small area laboratory scale devices produced using fabrication techniques such as spin coating and physical vapor deposition which are incompatible with low-cost and large area fabrication of perovskite solar cells using printing and coating techniques. To solution these problems, we have investigated the feasibility of achieving fully printable perovskite solar cells by the blade-coating technique. The blade-coating fabrication has been widely used to fabricate organic solar cells (OSCs) and is proven to be a simple, environment-friendly, and low-cost method for the solution-processed photovoltaic. Moreover, the film morphology control in the blade-coating method is much easier than the spray coating and roll-to-roll printing; high-quality photoactive layers with controllable thickness can be performed by using a precisely polished blade with low surface roughness and coating gap control between blade and coating substrate[1]. In order to fabricate perovskite devices with good efficiency, one of the main factors in printed electronic processing is the fabrication of thin films with controlled morphology, high surface coverage and minimum pinholes for high performance, printed thin film perovskite solar cells. Charge dissociation efficiency, charge transport and diffusion length of charge species are dependent on the crystallinity of the film [2]. We fabricated the printed perovskite solar cells with large area and flexible by the bar-coating. The morphology of printed film could be closely related with the condition of the bar-coating technique such as coating speed, concentration and amount of solution, drying condition, and suitable film thickness was also studied by using the optical analysis with SEM. Electrical performance of printed devices is gives hysteresis and efficiency distribution.

  • PDF

그라비어 인쇄에서 속도와 압력변화에 따른 시뮬레이션에 관한 연구 (A Study on the Computer Simulation in the Changing Velocity and Pressure in Gravure Printing.)

  • 박성준;임수만;윤종태
    • 한국인쇄학회지
    • /
    • 제25권1호
    • /
    • pp.53-64
    • /
    • 2007
  • Gravure printing is the most useful printing process than any other engraving printing method. According to the cell which is variable size and depth, ink is transferred substrates. So, the amount of ink from cells has a great effect on the qualities of final printed products. The variables effect on the printability of final products are proportion of the width and length, the rhelogical properties, roll speed etc. However the mechanism of gravure is difficult to study scientifically because of high speed and excessively small size of the cell. To approach the mechanism we experimented the real test by using gravure printability. The condition of variables of IGT is pressure and velocity. By using Polyflow 3. 10. 0 simulation software, we built up the theoretical model under the constant variables. Then, we compared the real test with the simulation results. Therefore, it is studied the mechanism of gravure scientifically and it can be analysed the effect of the variable conditions.

  • PDF

그라비아 프린팅 공정에서 점탄성 잉크와 기판의 계면접착력 평가 (Evaluating Interfacial Force between Viscoelastic Ink and Substrate in Gravure Printing Process)

  • 유미림;안경현;이승종
    • Korean Chemical Engineering Research
    • /
    • 제53권1호
    • /
    • pp.111-115
    • /
    • 2015
  • 그라비아 프린팅 공정에서 고해상도의 패턴을 인쇄하기 위해서는 잉크가 기판으로 전사되는 양을 높이는 것이 중요하다. 일반적으로 잉크와 기판의 친화도가 높을수록 더 많은 양의 잉크를 전사시킬 수 있다. 하지만, 실제 산업에서 쓰이는 점탄성 잉크와 다양한 기판의 친화도를 정확히 평가하는 방법은 아직 제시된 바 없다. 본 연구에서는 점탄성 잉크와 다양한 기판의 계면 친화도를 실용적으로 평가할 수 있는 방안을 제시하고자 한다.

Screen Printing법을 이용한 압전 후막의 제조 및 특성연구 (Fabrication and Characterization of piezoelectric thick films prepared by Screen Printing Method)

  • 김상종;최형욱;백동수;최지원;윤석진;김현재
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.873-876
    • /
    • 2000
  • Characteristics of piezoelectric thick films prepared by screen printing method were investigated. The piezoelectric thick films were printed using Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$system. The lower electrodes were coated with various thickness of Ag-Pd by screen printing to investigate the effect as a diffusion barrier and deposited with Pt by sputtering on Ag-Pd. The ceramic paste was prepared by mixing powder and binder with various ratios using three roll miller. The fabricated thick films were burned out at 650$^{\circ}C$ and sintered at 950$^{\circ}C$ in the O$_2$condition for each 20, 60min after printing with 350mesh screen. The thickness of piezoelectric thick film was 15∼20 $\mu\textrm{m}$ and the Ag-Pd electrode acted as a diffusion barrier above 3 $\mu\textrm{m}$ thickness. When the lower electrode Ag-Pd was 6 $\mu\textrm{m}$ and the piezoelectric thick films were sintered by 2nd step (650$^{\circ}C$/20min and 950$^{\circ}C$/1h) using paste mixed Pb(Mg,Nb)O$_3$-Pb(Zr,Ti)O$_3$$.$ MnO$_2$+ Bi$_2$O$_3$. V$_2$O$\_$5/ and binder in the ratio of 70:30, the remnant polarization of thick film was 9.1 ${\mu}$C /cm$^2$.

  • PDF