• Title/Summary/Keyword: roll speed

Search Result 376, Processing Time 0.035 seconds

Microstructure and Mechanical Property in Thickness Direction of a Deoxidized Low-Phosphorous Copper Sheet Processed by Two-Pass Differential Speed Rolling (2-pass 이주속압연된 인탈산동판재의 두께방향으로의 미세조직 및 기계적 특성)

  • Lee, Seong-Hee;Jang, Jun-Hyuk;Utsunomiya, Hiroshi
    • Korean Journal of Materials Research
    • /
    • v.23 no.7
    • /
    • pp.392-398
    • /
    • 2013
  • A two-pass differential speed rolling(DSR) was applied to a deoxidized low-phosphorous copper alloy sheet in order to form a homogeneous microstructure. Copper alloy with a thickness of 3 mm was rolled to 75 % reduction by two-pass rolling at $150^{\circ}C$ without lubrication at a differential speed ratio of 2.0:1. In order to introduce uniform shear strain into the copper alloy sheet, the second rolling was performed after turning the sample by $180^{\circ}$ on the transverse direction axis. Conventional rolling(CR), in which the rotating speeds of the upper roll and lower roll are identical to each other, was also performed by two-pass rolling under a total rolling reduction of 75 %, for comparison. The shear strain introduced by the conventional rolling showed positive values at positions of the upper roll side and negative values at positions of the lower roll side. However, samples processed by the DSR showed zero or positive values at all positions. {100}//ND texture was primarily developed near the surface and center of thickness for the CR, while {110}//ND texture was primarily developed for the DSR. The difference in misorientation distribution of grain boundary between the upper roll side surface and center regions was very small in the CR, while it was large in the DSR. The grain size was smallest in the upper roll side region for both the CR and the DSR. The hardness showed homogeneous distribution in the thickness direction in both CR and DSR. The average hardness was larger in CR than in DSR.

A Study on the Manufacturing Process for High-finned Tube of Copper Pipe using Roll Forming Method (전조공법을 이용한 동관의 하이핀 튜브 제조 공정에 대한 연구)

  • Kim, Tae-Gyu
    • Korean Journal of Materials Research
    • /
    • v.16 no.2
    • /
    • pp.111-115
    • /
    • 2006
  • High-finned tubes have good thermal conductivity and have better cooling efficiency than plain tubes or low-fined tubes due to bigger air contact area. During high-fined tubes are manufactured by roll forming, the main technique is illustrated to optimizing primary material(copper pipe), optimized die matrix designing technique for roll forming, control manufacturing speed to develop productivity etc. In this study, a roll forming system was developed in oder to produce high-finned tube. Also a multi-step roll forming die was designed & built to produce high-finned tube that has over 10 mm fin height. And then, roll forming test using copper pipe was performed to produce high-finned tube. Roll forming process for producing highfinned tube was optimized by analyzing and adjusting misrostructure, hardness, and surface roughness of roll formed high-fined tube.

Experimental study on the influence of Reynolds number and roll angle on train aerodynamics

  • Huang, Zhixiang;Li, Wenhui;Liu, Tanghong;Chen, Li
    • Wind and Structures
    • /
    • v.35 no.2
    • /
    • pp.83-92
    • /
    • 2022
  • When the rolling stocks run on the curve, the external rail has to be lifted to a certain level to balance the centrifugal force acting on the train body. Under such a situation, passengers may feel uncomfortable, and the slanted vehicle has the potential overturning risks at high speed. This paper conducted a wind tunnel test in an annular wind tunnel with φ=3.2 m based on a 1/20th scaled high-speed train (HST) model. The sensitivity of Reynolds effects ranging from Re = 0.37×106 to Re = 1.45×106 was tested based on the incoming wind from U=30 m/s to U=113 m/s. The wind speed covers the range from incompressible to compressible. The impact of roll angle ranging from γ=0° to γ=4° on train aerodynamics was tested. In addition, the boundary layer development was also analyzed under different wind speeds. The results indicate that drag and lift aerodynamic coefficients gradually stabilized and converged over U=70 m/s, which could be regeared as the self-similarity region. Similarly, the thickness of the boundary layer on the floor gradually decreased with the wind speed increase, and little changed over U=80 m/s. The rolling moment of the head and tail cars increased with the roll angle from γ=0° to γ=4°. However, the potential overturning risks of the head car are higher than the tail car with the increase of the roll angle. This study is significant in providing a reference for the overturning assessment of HST.

Thickness control in metal-strip milling process (압연 공정에서의 판 두께 제어)

  • 신기현;홍환기;김광배;오상록;안현식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.1141-1146
    • /
    • 1993
  • The problem of tension control in metal-strip processing line is discussed. A new mathematical dynamic model which relates tension change, motor-speed change and roll-gap change is developed. Through the computer simulation of this model, parameter sensitivity, the tension transfer phenominon, and static and dynamic characteristics of strip tension were studied. Guidelines are developed to help one selecting locations of the master-speed drive in multi-drive speed control for tension adjustment and reducing the effect of interaction between tension and roll gap control.

  • PDF

A Study on the Characteristic of Work Roll texturing for the Temper Rolling (조질압연용 Work roll의 조도가공 특성에 관한 연구)

  • 전태옥;전언찬;김순경
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.505-511
    • /
    • 1993
  • The results were obtained with changes according to the surface roughness of work roll and method to make the peak count on the roll in the temper rolling, and factors to affect to the work roll surface in actual rolling machine(ie. Temper mill). Conclusions are as follows. 1. E.D.T(Electro-discharge texturing)roll is more uniform roughness distribution than shot blasted roll and it's life time is two timees longer than that of shot blasted because it has more sine wave roughness. 2. The higher peak count of surface roughness, the more time is necessary to work roll texturing In shot blasting method, Surface roughness is relating to the grit size,impeller speed and hardness of roll material, But is can't control the peak count. 3. In shot blast texturing, Surface roughness of temper rolled strip which is transfered surface roughness of work roll is more ununiform than that of E.D.T roll 4. E.D.T roll has more uniform than the shot blasted roll and has more peak count than that of shot blasted roll. The surface of painted strip to image clarity is superior to that of shot blasted roll because E.D.T roll has more peak count and smooth surface.

  • PDF

Temperature profile analysis for HSS Roll in Hot Strip Mill (열간압연 롤의 온도 해석 결과)

  • 이명재;류재화;이희봉
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.242-251
    • /
    • 1999
  • The temperature distribution over the work roll length was estimated by solving a 2-dimensional heat transfer equation based on the rolling conditions and the thermal boundary conditions. In order to solve the governing equation, a finite volume method was employed. In the rolling conditions, the strip temperature, the contact time between roll and strip, the roll speed, the strip thickness, the rolling force and the rolling and idling time were used as input data. In order to verify the accuracy of temperature estimation, roll surface temperatures were measured in the roll shop. The measured temperatures showed a good correlation with the calculated ones.

  • PDF

Optimization of Printing Conditions Using Design Experiments for Minimization of Resistances of Electrodes in Roll-to-roll Gravure Printing Process (롤투롤 그라비어 방식의 인쇄 전극 저항 최소화를 위한 실험계획법 적용 인쇄 공정 조건 최적화)

  • Lee, Sang Yoon;Kim, Cheol;Kim, Chung Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.351-356
    • /
    • 2017
  • The resistance of printed patterns for electrodes fabricated using printing technology should be minimized. This parameter depends on the pattern width and thickness; however, from the viewpoint of printability, the printed patterns should be printed at the designed width. The resistance of the printed patterns as well as printability is affected by various printing conditions. In this paper, the printing condition is optimized to minimize the resistance of electrodes printed by the roll-to-roll gravure method. This is done by considering the spread ratio of pattern width as a parameter of printability using design experiments. The drying temperature, dryer fan speed, and printing speed are selected as effective factors for the experiment objective. The optimized conditions are obtained and reproducibility test using these demonstrates that the optimized conditions can produce low-resistance electrodes for printability of the pattern width.

Research on the Airflow and Air Entrainment on Roll-to-Roll System (Roll to Roll 공정상의 유동장 계측 및 공기유입)

  • Kim, Sung-Kyun;Park, Joon-Hyung;Liem, Huynh Quang
    • Journal of the Korean Society of Visualization
    • /
    • v.6 no.2
    • /
    • pp.39-44
    • /
    • 2008
  • The Roll-to-Roll system including continuous flexible thin materials and roller has its wide range of applications especially in the electronic printing industry. The industry is growing rapidly and the printing speed is also improving. However, the printing machine based on web and roller system has it own problem. As the web speed increases, the failure to maintain the contact may occur and the air entrain between the roller and the paper web may exist. Air bubbles may remain attached to electronic ink on the web causing defects on product surface. With the development of image processing technique, the airflow around the web and rolls can be visualized and calculated by PIV method. In our experiment, the simple web and rolls system is used to R2R simulator. The flow field is studied at various web speeds and positions. The result shows that the flow field has complicated structure with turbulent characteristic and the main trend of flow is obtained by taking time average of flow field.

A Study on Roll Eccentricity Detection in Hot Strip Mill

  • Choi, Il-Seop;Choi, Seung-Gap;Jeon, Jong-Hag;Hong, Seong-Cheol;Park, Cheol-Jae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.121.4-121
    • /
    • 2001
  • We propose an off-line methodology for detecting a faulty backup roll that generates eccentricity components, under the condition that the feeding velocity, equivalently the angular velocity of roll, is not constant. From a newly devised speed angle conversion algorithm, we transform all process data into those of a virtual process under a constant feeding speed. This indirectly way, we can apply a spectral analysis to the original process. In addition, we develop an online detection method of roll eccentricity based on newly designed PLG sensor. This PLG sensor is robust because of applying magnetic proximity sensnors and non-contact measurement method.

  • PDF

Nucleation and Growth Mechanism of Sticking Phenomenon in Ferritic Stainless Steel (페라이트계 스테인레스강의 STICKING 발생 및 성장기구)

  • Jin, W.;Choi, J.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.373-382
    • /
    • 1999
  • Nucleation and growth process of sticking particle in ferritic stainless steels was investigated using a two disk type hot rolling simulator. The sticking behavior was strongly dependent on the surface roughness of a high speed steel roll(HSS) and the oxidation resistance of the ferritic stainless steels. A hot rolling condition with the lower oxidation resistance of the stainless steel and the higher surface roughness of HSS roll was more sensitive to sticking occurrence. It was also illucidated that the initial sticking particles were nucleated at the scratches formed on the roll surface and were served as the sticking growth sites. As rolling proceeded, the sticking particles grew sites. As rolling proceeded, the sticking particles grew by the process that the previous sticking particles provided the sticking growth sites.

  • PDF