• 제목/요약/키워드: roll motion control

검색결과 150건 처리시간 0.025초

OTM 단말기 안테나 시선 안정화 제어 (Stabilization Control of line of sight of OTM(On-The-Move) Antenna)

  • 강민식;조용완
    • 전기학회논문지
    • /
    • 제59권11호
    • /
    • pp.2073-2082
    • /
    • 2010
  • The 4-th generation of mobile communication aims to realize global, fast and mobile communication service. The satellite communication charges a key role in this field. In this study, an OTM(On-The-Move) antenna which is mounted on ground vehicles and is used for mobile communication between vehicle and satellite was addressed. Since vehicles move during communication, active antenna line-of-sight stabilization is a core technology to guarantee high satellite communication quality. Stabilization of a satellite tracking antenna which consists of 2-DOF gimbals, an elevation gimbal over an azimuth gimbal, was considered in this study. Various disturbance torques such as static and dynamic mass imbalance torques, variation of moment of inertia according to elevation angle, friction torque related to vehicle motion, equivalent disturbance torque due to antenna roll motion, etc. were analyzed. As a robust stabilization control, rate feedback with sliding mode control and position feedback with proportional+integral control was suggested. To compensate antenna roll motion, a supplementary roll rate feed forward control was included beside of the feedback control loop. The feasibility of the analysis and the proposed control design were verified along with some simulation results.

무게중심이 높은 차량의 롤 강성계수 증대를 위한 스티어링 제어기법의 응용에 관한 연구 (A Study on the Application of the Steering Control to Increase Roll Stiffness for the Relatively Tall Vehicles)

  • 소상균;변기식
    • 융합신호처리학회논문지
    • /
    • 제4권2호
    • /
    • pp.53-60
    • /
    • 2003
  • 무게중심이 높은 차량은 코너링 시에 전복되는 위험을 방지하기 위해 서스펜션 롤 강성이 매우 커야 한다. 어떤 경우에는 효과적인 롤 강성이 주로 타이어 컴플라이언스에 의해 결정되는데, 그러한 경우에는 히브(heave) 진동의 감쇠를 위해 사용되는 쇽업쇼바는 롤 진동을 억제하는 데에는 별다른 효과가 없다. 따라서, 차량의 측면에 돌풍이 불거나 차량이 불규칙한 도로면을 통과하게 될 경우 차량이 좌우로 심하게 흔들리게 된다. 본 연구에서는 무게중심이 높은 차량의 안정성을 향상시키기 위해서 롤 모드 상에서 댐핑을 증가시킬 수 있는 제어기법이 제안되었다. 롤 운동의 댐핑을 제공하기 위해 요구되는 궤환신호로 앞 또는 뒤 또는 앞 뒤 바퀴의 조향각이 사용되었다. 그 이유는 그 신호들이 롤 운동과 매우 밀접하게 관련이 있기 때문이다. 제안된 제어기법은 중고속에서 매우 효과적이고 쇽업쇼바와는 달리 외적 입력에 대해 외란 모멘트를 생성하지 않고 롤 모드를 안정화시키는 것이 가능하다. 이론적으로 제시된 제어기법에 대한 타당성을 컴퓨터 시뮬레이션으로 확인하였다.

  • PDF

차량 안정성 향상을 위한 ESC와 ARS의 통합 샤시 제어 알고리즘 개발 (An Investigation into Coordinated Control of 4-wheel Independent Brakes and Active Roll Control System for Vehicle Stability)

  • 허현동;이경수;서지윤;김종갑
    • 자동차안전학회지
    • /
    • 제5권1호
    • /
    • pp.37-43
    • /
    • 2013
  • This paper describes an investigation into coordinated control of electronic stability control (ESC) and active roll control system (ARS). The coordinated control is suggested to improve the vehicle stability and agility features by yaw rate control. The proposed integrated chassis control algorithm consists of a supervisor, control algorithms, and a coordinator. The supervisor monitors the vehicle status and determines desired vehicle motions such as a desired yaw rate and desired roll motion based on control modes to improve vehicle stability. According to the corresponding the desired vehicle dynamics, the control algorithm calculated a desired yaw moment and desired roll moment, respectively. Based on the desired yaw moment and the desired roll moment, the coordinator determines the brake pressures and the ARC motor torques based on control strategies. Closed loop simulations with a driver-vehicle-controller system were conducted to investigate the performance of the proposed control strategy using CarSim vehicle dynamics software and the integrated controller coded using Matlab/Simulink.

능동형 횡동요 저감 장치를 이용한 선박운동제어 시뮬레이션 (Simulation of Vessel Motion Control by Anti-Rolling Tank)

  • 김경성;이병혁
    • 한국해양공학회지
    • /
    • 제32권6호
    • /
    • pp.440-446
    • /
    • 2018
  • The effects of an anti-rolling tank (ART) on vessel motions were numerically investigated. The potential-based BEM vessel motion simulation program and particle-based computational fluid dynamics program were dynamically coupled and used to perform a simulation of vessel motions with ART. From the time domain simulation results, the response amplitude operators for sway and roll motions were obtained and compared with the corresponding experimental and numerical results. Because the main purpose of ART was only to reduce roll motions, it was important to show that the natural properties of a floating vessel were not changed by the effects of ART. Various ART filling ratios and several ART positions were considered. In conclusion, ART only reduced the roll motion regardless of its filling ratio and position.

조타장치 제어에 의한 횡동요 감소 효과 (Effects for reduction of roll motion by the control of steering gear)

  • 최찬문;이창헌;안장영;요시무라 야스오
    • 수산해양기술연구
    • /
    • 제47권1호
    • /
    • pp.37-45
    • /
    • 2011
  • Reduction of ship's rolling is the most important performance requirement for improving the safety of the crew on board and preventing damage to cargo as well as improving the comfort of the ride. It is a common experience for mariners, to see that steering with a rudder generally induces rolling of the ship, though the original aim of the rudder is to keep the ship's heading to the required course. At the first stage, when a rudder is steered, usually a ship heels in an inward direction, due to the roll moment acting on the rudder. At the next stage in steering, the main heel may change to an outward. This coupling between rudder and roll motion has become an attractive problem from the point of view of roll stabilization using the rudder, because it is a natural in sight that if the rudder action is skillfully related to the change of roll as well as to the course deviation, the roll can be reduced to a certain degree. The main aim of this paper is to discuss the results of the actual full-scale sea trials carried out on steer gear No.1 and No.1 2, the individual quartermaster and to make clear their statistical properties, using the actual data which included measurement of roll angle, roll rate and the comparative tests were carried out immediately after each other, in order to minimize any statistical variation in sea conditions. It can be concluded that the steer gear No. 1 2 reduced the roll motion on average by about 21% in comparison with the No.1 and confirmed the some difference as per a ability of quarter-master's maneuver.

크루즈선의 횡동요 제어시스템에 미치는 포드 각속도의 영향 (The Effect of the Turning Rate of the Pod Propeller on the Roll Control System of the Cruise Ship)

  • 이성균;이재훈;이기표;최진우
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.14-25
    • /
    • 2012
  • Recently, the application and installation of the pod propeller to the cruise ship is dramatically increased. It is because pod propulsion system allows a lot of flexibility in design of the internal arrangement of a ship. To reflect this trend, many researches have conducted to use the pod propeller for the roll stabilization of a ship. In the paper, a roll stabilization controller is designed by using fins and pod propellers as the control actuators for cruise ships. Two kinds of control algorithms are adopted for the roll control system; LQR (Linear Quadratic Regulator) algorithm and frequency-weighted LQR algorithm. Through the numerical simulation, the effect of the turning rate of the pod propeller on the roll control system is analyzed. Analysis of the simulation results indicated that the turning rate of the pod propellers is one of the important parameters which give the significant effects on the roll stabilization.

영상 안정화를 위한 회전중심 및 각도 추정기법 (Estimation of Rotational Center and Angle for Image Stabilization)

  • 석호동;유준;김도종
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.611-617
    • /
    • 2004
  • This paper presents a simple method of rotational motion estimation and correction for roll axis stabilization of an image. The scheme first computes the rotation center by taking least squares of selected local velocity vectors, and the rotational angle is found from special subset of motion vectors. Roll motion correction is then performed by the nearest neighbor interpolation technique. To show the effectiveness of our approach, the synthetic and real images are evaluated, resulting in better performance than the previous ones.

선박 주행속도 변화를 고려한 Rudder-Roll Stabilization System 설계에 관한 연구 (A Study on Rudder-Roll Stabilization System Design for Ship with Varying Ship Speed)

  • 김영복;채규훈
    • 제어로봇시스템학회논문지
    • /
    • 제8권5호
    • /
    • pp.363-372
    • /
    • 2002
  • In ship operation, the roll motions can seriously degrade the performance of mechanical and personnel effectiveness. So many studies for the roll stabilization system design have been performed and good results have been achieved. In many studies, the stabilizing fins are used. Recently rudders, which have been extensively modified, have been used exclusively to stabilize the roll. But, in the roll stabilization control system, the control performance is very sensitive to the ship speed. So, we can see that it is important to consider the ship speed in the rudder roll control system design. The gain-scheduling control technique is very useful in the control problem incorporating time varying parameters which can be measured in real time. Based on this fact, in this paper we examine the;$H_{\infty}$-Gain Scheduling control design technique. Therefore, we assume that a parameter, the ship speed which can be estimated in real time, is varying and apply the gain-scheduling control technique to design the course keeping and anti-rolling control system far a ship. In this control system, the controller dynamics is adjusted in real-time according to time-varying plant parameters. The simulation result shows that the proposed control strategy is shown to be useful for cases when the ship speed is varying and robust to disturbances like wind and wave.

환상 압연 공정의 적응 제어 (An adaptive controller for ring rolling precesses)

  • 최형돈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.534-539
    • /
    • 1986
  • This paper considers the ring rolling process contorl and treats the problem of controlling the pressure roll and conical roll motion which critically affects final quality of the rolled products. Since the process dynamics reveals nonlinear characteristics and parameter uncertainty, an adaptive control scheme was applied. The results show that this proposed adaptive control scheme can produce rolled rings of closer dimensional tolerances as compared with nonadaptive control system.

  • PDF

자유회전 테일핀을 갖는 미사일에 대한 Roll Lock-in 현상의 수치적 연구 (A NUMERICAL STUDY ON THE ROLL LOCK-IN OF A CANARD-CONTROLLED MISSILE WITH FREELY SPINNING TAILFINS)

  • 양영록;김문석;명노신;조태환
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.48-55
    • /
    • 2009
  • In this study, roll lock-in phenomena of freely spinning tailfins were investigated by a CFD code. To analyze a motion of freely spinning tailfins, this research use a Chimera method, an Euler code and a 6 degrees of freedom analysis. The numerical results of aerodynamic characteristics and roll rates of a canard-controlled missile with freely spinning tailfins show a good agreement with wind tunnel test results. Using the roll rates calculation result of freely spinning tailfins, roll lock-in phenomena is confirmed. Roll lock-in phenomena and Roll lock-in states can be predicted through effects of the induced vortex of the canards control and the analysis of the rolling moments of tailfins due to the bank angle.