• Title/Summary/Keyword: rocket engine

Search Result 988, Processing Time 0.027 seconds

On the Force Balance of a Main Oxidizer Shutoff Valve (산화제 개폐밸브의 힘평형에 관한 연구)

  • Hong, Moon-Geun;Lee, Soo-Yong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.14-17
    • /
    • 2008
  • A poppet type shutoff valve under the pneumatic control has been adapted for the MOV (Main Oxidizer shutoff Valve) for KSLV (Korea Space Launch Vehicle). The MOV controls the supply of liquid oxygen into the combustion chamber just by opening and shutting operations. The poppet part of the poppet valves is usually connected with the piston, but on the other hand that of the MOV is separated and just contacted with the piston in order to secure the flexibility of the valve design. For the prevention of the collision with valve body by an undesirable movement of the piston part, it is necessary to evaluate the force during the valve closing. The analysis of the force balance of the MOV at the moment of the valve closing have been performed and some important design parameters for the force balance control have been introduced.

  • PDF

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

Study on Structural Characteristic for Durability Insurance of Turbopump Turbine (터보펌프 터빈의 내구성 확보를 위한 구조적 특성 연구)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kwon, Jeong-Sik;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.382-386
    • /
    • 2009
  • The life of a component decreases when it was exposed at the extreme condition. A turbine blade of a turbopump used for a liquid rocket engine is operated under the environment of high temperature and pressure, and experienced high centrifugal force. Thus the durability of the turbopump operated under the these conditions become lower than expected because of the severe fatigue and creep influence. The damage of the turbine being considered the fatigue and the creep influence is estimated to ensure the durability of turbopump turbine. ABAQUS/CAE and MSC.Fatigue are used for the fatigue analysis, and Larson-Miller parameter and robinson's rule are used for the creep analysis. In this paper, comparison and analysis of the fatigue and the creep influence were performed to ensure the life expectancy of turbopump turbine.

  • PDF

Flame Structure and Combustion Dynamic Characteristics of GCH4/GO2 in Bi-Swirl Coaxial Injectors (동축 와류형 분사기에서 기체메탄/기체산소 화염 구조와 연소 동특성)

  • Bak, Sujin;Hwang, Donghyun;Ahn, Kyubok;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.6
    • /
    • pp.28-38
    • /
    • 2019
  • To investigate the relation between flame structure and combustion dynamic characteristics in bi-swirl coaxial injectors for a liquid rocket engine, combustion experiments were performed using gaseous methane and gaseous oxygen. CH* radicals and pressure fluctuations were simultaneously measured by changing the injector geometries such as recess length/orifice diameter and the flow conditions such as equivalence ratio/oxidizer mass flow rate. As the injector geometries affected the velocities and mixing of the propellants, the change in flame structures was observed. From a result of the frequency analysis, it was confirmed that combustion dynamic characteristics varied according to the injector geometry/flow condition and combustion instabilities could occur under specific recess length/flow conditions.

Comparison of Combustion Performance between Single Injector Combustor and Sub-scale Combustor (액체로켓엔진 연소기용 단일 분사기 연소기와 축소형 연수고 수류/연소시험 결과 비교)

  • Kim, Seung-Han;Han, Yeoung-Min;Seo, Seong-Hyeon;Moon, Il-Yoon;Lee, Kwang-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.451-454
    • /
    • 2006
  • This paper describes the results of cold flow test and hot firing tests of an uni-element coaxial swirl injector and hot firing tests of a subscale combustor, as to the development effort of coaxial swirl injector for high performance liquid rocket engine combustor. A major design parameter for coaxial swirl injector is the recess number of a bi-swirl injector. The results of hot firing tests of the uni-element injector combustor and the sub-scale combustor are analyzed to investigate the effect of the recess number influencing on the combustion performance and pressure fluctuation. The test results of a cold flow test of the unielement combustor shows that it was shown that the change in recess number has significant effect on mixing characteristics and efficiency, while the effect of recess number on atomization characteristic is not The results of a series of firing tests using unielement and subscale combustor show that the recess length significantly affects the hydraulic characteristics, the combustion efficiency, and the dynamics of the liquid oxygen/kerosene bi-swirl injector. As a point of combustion performance, combustion efficiencies are 90% for unielement combustor and 95% for subscale combustor. The difference in the characteristic velocities between the unielement combustor and the subscale combustor may be caused by the difference in thermal loss to the combustor wall and the relative lengths of the combustion chamber. For a mixed type coaxial swirl combustor, the pressure drop across the injector increases as recess number becomes larger. The low frequency pressure fluctuation observed in unielement combustor can be related to the propellant mixing characteristics of the coaxial bi-swirl injector. The effect of the recess number on the pressure fluctuation inside the combustion chamber is more significant in un i-element combustor than the subscale combustor, of which the phenomena are also observed in time domain and frequency domain.

  • PDF

A Study on Quantification of Damping Efficiency of Acoustic Cavities by Absorption Coefficient (흡음 계수를 이용한 연소불안정 제어용 음향공의 감쇠 정량화)

  • Cha, Jung-Phil;Song, Jae-Gang;Hong-Jip Kim;Ko, Young-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.5
    • /
    • pp.438-445
    • /
    • 2007
  • A Helmholtz resonator as a stabilization device to control high-frequency combustion instabilities in liquid rocket engine is adopted and its damping capacity is verified by linear acoustic analysis and atmospheric acoustic tests. To compare the results of acoustic attenuation effect in accordance with uni-resonator's geometry, quantitative analyses were made in the cases of various orifice diameters and lengths. Next, in the experiments to compare the results of acoustic attenuation effect by a difference in the number of resonators, damping capacity of harmful resonant frequency was improved by the increase of the number of resonators. On the other hand, attenuation efficiency of the frequency tended rather to lower due to over damping from the point of view of absorption coefficient. As the result, tuning the suitable geometry for the resonator to the resonant frequency is required for the control using the resonator. Also, the design of resonator's geometry and the choice of its number are important to put up the optimal efficiency in consideration of restriction of its volume.

A Study of Interaction Effect from Spray Fan Formed by Impinging Jets (충돌분류에 의해 형성된 Spray fan의 간섭효과에 관한 연구)

  • Han, J.S.;Kim, S.J.;Moon, D.Y.;Kim, Y.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.3 no.3
    • /
    • pp.9-15
    • /
    • 1999
  • The Analysis of spray characteristics for combined spray group are necessary to develop large rocket engine. In this study, basic effects of interaction from spray fan formed by impinging jets were investigated with respect to mass distribution, droplet velocities and diameter. Patternater and PDPA are used for experimental apparatus. Water was used as a test fluid When momentum ratio is 1, effect of interaction from collision of spray fan on mass distribution are small. Also, effect of interaction from collision of spray fan on droplet velocities and diameter are small. But, droplet diameter is smaller near collision point due to second collision. Therefor, for the same momentum ratio from spray fan formed by impinging jets, we may neglect effect of interaction on mass distribution, droplet velocities and diameter.

  • PDF

Cold flow Test and Ignition Test of a 75-tonf-Class Thrust Chamber with Ablative Material for Technology Demonstration (75톤급 기술검증용 내열재 연소기의 수류시험과 점화시험)

  • Lee, Kwang-Jin;Kim, Jong-Gyu;Kim, Mun-Ki;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.6
    • /
    • pp.26-37
    • /
    • 2011
  • A 75-tonf-class LRE(liquid rocket engine) thrust chamber with ablative material for technology demonstration was manufactured on the basis of development technologies of 30-tonf-class LRE. Hydraulic characteristics of the thrust chamber were examined through cold flow test and ignition test of low flow condition. Test result showed that hydraulic function was good. Side ignition method with igniter ring also showed a fine function of ignition in operating ways of static condition. But a close review is required to understand the phenomena of generation and extinction of specific frequencies showed in dynamic characteristics ways. To achieve these, a large combustion test facility which is capable of performing combustion test at design condition of the 75-tonf-class thrust chamber should be constructed as soon as possible.

Analysis of Pressure Fluctuations in a Thrust Chamber with Chamber Pressure Variation (연소실 압력 변화에 따른 연소기 압력 섭동 분석)

  • Ahn, Kyu-Bok;Lim, Byoung-Jik;Kim, Jong-Gyu;Han, Yeoung-Min;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.8-14
    • /
    • 2010
  • For the development of a liquid rocket engine, hot-firing tests of a regeneratively cooled thrust chamber were performed at chamber pressures of approximately 30 and 60 bars. In the paper, pressure fluctuation data, which were obtained from the dynamic pressure transducers installed in propellant manifolds and combustion chamber, were analyzed. Compared to the data at chamber pressure of 60 bar, the results at chamber pressure of 30 bar showed low-frequency oscillations around 150 Hz in the combustion chamber. The low-frequency waves in the combustion chamber were coupled with those in the manifolds. However, the RMS values of the chamber pressure fluctuations at chamber pressure of 30 bar were only 0.8% of the chamber pressures. Thus, it can be inferred that the thrust chamber operates in the stability boundary even at low chamber pressure.

Pulse-mode Response Characteristics of a Small LRE for the Precise 3-axes Control of Flight Attitude in SLV (우주발사체의 비행자세 3축 정밀제어를 위한 소형 액체로켓엔진의 펄스모드 응답특성)

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo;Bae, Dae Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.1
    • /
    • pp.1-8
    • /
    • 2013
  • A liquid-monopropellant hydrazine thruster has several outstanding advantages such as relatively-simple structure, long/stable propellant storability, clean exhaust products, and so on. Therefore hydrazine thruster has such a wide application as orbit and attitude control system (ACS) for space vehicles. A hydrazine thruster with the medium-level thrust to be used in the ACS of space launch vehicles (SLV) has been developed, and its ground firing test result is presented in terms of thrust, impulse bit, temperature, and chamber pressure. It is verified through the performance test that the response and repeatability of thrust are very excellent, and the thrust efficiencies compared to its ideal requirement are larger than 93%.