• Title/Summary/Keyword: rock-forming minerals

Search Result 86, Processing Time 0.026 seconds

Developing Web Contents for Rock-forming Mineral Observation under Polarizing Microscope (편광현미경을 이용한 조암광물 관찰 웹 컨텐츠 개발)

  • Lee, Chang-Zin;Park, Cheol-Mo;Ryu, Chun-Ryol
    • Journal of the Korean earth science society
    • /
    • v.30 no.2
    • /
    • pp.176-184
    • /
    • 2009
  • The purpose of this study is to develop and apply the web contents about the optical characteristics of rock forming minerals. The web contents developed in this study are fundamentally made up so as to show clearly the learning objective and the teaching and learning contents, and to review one content easily and search for another content freely. In addition to the web contents, the photos and moving images of the optical characteristics of rock forming minerals cited in the middle and high school textbooks are demonstrated for the students to recognize the mineral characteristics on the screen. The analysis on the quality level and teaming effect of teaching and teaming materials based on the investigation of the MALSAM after the application of the web contents to the class, showed that most students evaluated were effective for understanding the optical characteristics of the rock-forming minerals. About 62% of the students who used the web contents were able to identify the rock-forming minerals on the thin section under the polarizing microscope.

A Study on the X-ray Diffractometry of Rock Minelals (주요암석광물(主要岩石鑛物)에 대(對)한 X 선적(線的) 특성(特性)에 관(關)한 연구(硏究))

  • Choi, Dae Ung;Hwan, Kyung Sun;Shin, Jae Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.199-204
    • /
    • 1973
  • This work was carried out to establish the norm for identifying the rock forming minerals by the X-ray diffraction analysis with powdered rock samples. This study covered the eleven major rocks in Korea. The results are summarized as follows. 1. The norm for identifying the rock forming minerals based on X-ray diffraction data was established. 2. It was found that the rock forming minerals could be identified by the norm.

  • PDF

Comparison of Microscopic Method with X-ray Diffraction Analysis of Rock Minerals (주요암석(主要岩石) 광물(鑛物)에 대(對)한 현미경적분석(顯微鏡的分析)과 X-선회절분석(線回折分析)과 비교(比較))

  • Choi, Dae Ung;Hwang, Kyung Sun;Shin, Jae Sung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.6 no.4
    • /
    • pp.253-255
    • /
    • 1973
  • Microscopic method was compared with X-ray diflraction analysis for the identification of rockforming minerals using 11 main rock samples in Korea. 1. There was no difference between X-ray diffraction analysis and microscopic one in major minerals, but some accessary minerals. 2. The rock-forming minerals of main rocks presented in this study occured almost in crystalline state so that they could be easily identified by X-ray analysis alone.

  • PDF

Phase identification and degree of orientation measurements far fine-grained rock forming minerals using micro-area X-ray diffractometer -$Al_{2}SiO_{5}$ Polymorphs- (미소부 X-선 회절분석기를 이용한 미립조암광물의 상동정 및 배향도 측정 -$Al_{2}SiO_{5}$ 3상다형-)

  • 박찬수;김형식
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2000
  • Measurements of phase identification and degree of orientation for fine-grained (about 0.3 mm in diameter) minerals in rock samples performed by micro-area X-ray diffractometer.$Al_{2}SiO_{5}$ polymorphs (andalusite, kyanite and sillimanite) were chosen for the measurements and target minerals were existed on thin sections. Micro-area X-ray diffractometer is composed of 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillating goniometer and position sensitive proportional counter (PSPC). $CuK_{\alpha}$ radiation was used as X-ray source and a pin hole ($50\;\mu\textrm{m}$$ in diameter) collimator was selected to focus radiation X-ray onto the target minerals. Phase identification and diffracted X-ray peak indexing were carried out by 3(${\omega}\;{\chi}\;{\phi}$)-circle oscillation measurement. Then, 2(${\omega}\;{\phi}$)-circle oscillation measurement was made for the purpose of searching the prevailing lattice plane of the minerals on thin section surface. Finally, for a selected peak by 2-circle oscillation measurement, X-ray pole figure measurement was executed for the purpose of check the degree of orientation of the single lattice direction and examine its pole distribution. As a result of 3-circle oscillation measurement, it was possible that phase identification among $Al_{2}SiO_{5}$ polymorphs. And from the results of 2-circle oscillation measurement and X-ray pole figure measurement, we recognized that poles of andalusite (122), kyanite (200) and sillimanite (310) lattice plances were well developed with direction normal to each mineral surface plane respectively. Therfore, the measurements used with micro-area X-ray diffractometer in this study will be a useful tool of phase identification and degree of orientation measurement for fine-grained rock forming minerals.

  • PDF

Calculations of the Thermal Expansion Coefficient for Rock-Forming Minerals Using Molecular Dynamics (MD) Simulation (분자동역학(MD) 시뮬레이션을 이용한 조암광물의 열팽창 계수 산정)

  • 서용석;배규진
    • The Journal of Engineering Geology
    • /
    • v.11 no.3
    • /
    • pp.269-278
    • /
    • 2001
  • We describe the calculation of thermal expansion coefficients of $\alpha$-quartz, muscovite and albite using a MD simulation method. The selection of interatomic potentials is important for the MD calculation, and we used the 2-body interatomic potential function. The coefficients are calculated using a differential operation of the temperature dependence of the lattice constant obtained from the NPT-ensemble molecular dynamics simulation. Reasonable agreement is found between the analytical results and measured data.

  • PDF

Hydrogeochemical Research on the Characteristic of Chemical Weathering in a Granitic Gatchment (水文化學的 資料를 통한 花崗岩質 流域의 化學的 風化特性에 關한 硏究)

  • Park, Soo-Jin
    • Journal of the Korean Geographical Society
    • /
    • v.28 no.1
    • /
    • pp.1-15
    • /
    • 1993
  • This research aims to investigate some respects of chemical weathering processes, espcially the amount of solute leaching, formation of clay minerals, and the chemical weathering rate of granite rocks under present climatic conditions. For this purpose, I investigated geochemical mass balance in a small catchment and the mineralogical composition of weathered bedrocks including clay mineral assemblages at four res-pective sites along one slope. The geochemical mass blance for major elements of rock forming minerals was calculated from precipitation and streamwater data which are measured every week for one year. The study area is a climatically and litholo-gically homogeneous small catchment($3.62Km^2$)in Anyang-shi, Kyounggi-do, Korea. The be-drock of this area id Anyang Granite which is composed of coarse-giained, pink-colored miner-als. Main rock forming minerals are quartz, K-Feldspar, albite, and muscovite. One of the chracteristics of this granite rock is that its amount of Ca and Mg is much lower than other granite rock. The leaching pattern in the weathering profiles is in close reltion to the geochemical mass balance. Therefore the removal or accumulation of dissolved materials shows weathering patterns of granite in the Korean peninsula. Oversupplied ions into the drainage basin were $H^+$, $K^+$, Fe, and Mn, whereas $Na^2+$, $Mg^2+$, $Ca^2+$, Si, Al and $HCO-3^{-}$ were removed from the basin by the stream. The consumption of hydrogen ion in the catchment implies the hydrolysis of minerals. The surplus of $K^+$ reflects that vegetation is in the aggravation stage, and the nutrient cycle of the forest in study area did not reach a stable state. And it can be also presumed that the accumulation of $K^+$ in the top soil is related to the surplus of $K^+$. Oversupplied Fe and Mn were presumed to accumulate in soil by forming metallic oxide and hydroxide. In the opposite, the removal of $Na^+$, Si, Al resulted from the chemical weathering of albite and biotite, and the amount of removal of $Na^+$, Si, Al reflected the weathering rate of the bedrock. But $Ca^2+$ and $Mg^2+$ in stream water were contaminated by the scattered calcareous structures over the surface. Kaolinite is a stable clay mineral under the present environment by the thermodynamical analysis of the hydrogeochemical data and Tardy's Re value. But this result was quite different from the real assemblage of clay miner-als in soil and weathered bedrock. This differ-ence can be explained by the microenvironment in the weathering profile and the seasonal variation of climatic factors. There are different clay forming environments in the stydy area and these differences originate from the seasonal variation of climate, especially the flushing rate in the weathering profile. As it can be known from the results of the analysis of thermodynamic stability and characteristics of geochemical mas balance, the climate during winter and fall, when it is characterized by the low flushing rate and high solute influx, shows the environmental characteristics to from 2:1 clay minerals, such as illite, smectite, vermiculite and mixed layer clay minerals which are formed by neoformation or transformation from the primary or secondary minerals. During the summer and spring periods, kaoli-nite is a stable forming mineral. However it should consider that the other clay minerals can transformed into kaolinite or other clay minerals, because these periods have a high flushing rte and temperature. Materials which are directly regulated by chemical weathering in the weathered bedrock are $Na^+$, Si, and Al. The leaching of Al is, however, highly restricted and used to form a clay mineral, and that of Si falls under the same category. $Na^+$ is not taked up by growing veget ation, and fixed in the weathering profile by forming secondary minerals. Therefore the budget of $Na^+$ is a good indicator for the chemical weathering rate in the study area. The amount of chemical weathering of granite rocks was about 31.31g/$m^2+$/year based on $Na^+$ estimation.

  • PDF

Slaking, Swelling and Shear Strength Characteristics of Pohang Mudrocks (포항이암층의 Slaking, 팽창 및 전단강도특성)

  • 이영휘
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.33-42
    • /
    • 1996
  • The weathering of mudrock in the Pohang area is mainly caused by slaking and swelling when the mudrock is absorbed with water. In this regard, this paper chows the results of chemical analysis and the identification of rock-forming minerals from XRD. It also compares the slaking and swelling characteristics of mudrocks sampled from 3 different sites. The chief rock -forming minerals are the quartz, and the several types of clay minerals. The slake durability indices are ranged from 71% to 96%, and these values are closely related to the liquid limit of the powdered nock specimen. In a similar manner to the slaking characteristics the greatest values of the swelling pressure and the swelling strain were measured from the mudrock specimen with the highest value of liquid limit. The greatest measured values of the swelling pressure and the swelling strain are 9.4 kg 1 cm2 and 33.5% respectively. The residual sheer strength of mudrock decreases as the number of wet -diy cycles increases, and the residual strength at 5 cycles are measured to c,=0.24kg/cm2 and p,=28$^{\circ}$. The lowest residual strength is measured at the fresh rock -rock contact surface in the moist condition of which values are cr: 0 and n,: 21.5$^{\circ}$.

  • PDF

A study on the Beneficiation for Magnesite by the Grinding Characteristic of Rock Forming Minerals (조암광물의 분쇄특성을 이용한 마그네사이트 정제기술 연구)

  • Kim, Sang-Bae;Park, Hyung-Kyu;Kim, Wan-Tae;Kim, Yun-Jong
    • Korean Journal of Materials Research
    • /
    • v.17 no.11
    • /
    • pp.606-611
    • /
    • 2007
  • This study was conducted to beneficiation of magnesite by dry grinding and air classification. The raw ore was ground in a ball mill and pin mill controlled with grinding time and linear velocity of grinding media and fractionated in an air classifier. Pin mill is more efficient than the ball mill for liberation. As a result, the MgO grade of concentrate was 47.1% with recovery of 51.51% for classified with 3,000rpm of air classifier for ground at 13,000rpm in pin mill.

Generation Characteristics and Prediction of Acid Rock Drainage(ARD) of Road Cut Slopes (건설현장 절취사면의 산성배수 발생특성과 잠재적 산발생능력 평가)

  • Lee, Gyoo-Ho;Kim, Jae-Gon;Lee, Jin-Soo;Chon, Chul-Min;Park, Sam-Gyu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.491-498
    • /
    • 2005
  • Acid Rock Drainage(ARD) is the product formed by the atmospheric(i.e. by water, oxygen and carbon dioxide) oxidation of the relatively common iron-sulphur minerals pyrite($FeS_2$). ARD causes the acidification and heavy metal contamination of water and soil and the reduction of slope stability. In this study the generation characteristics and the prediction of ARD of various road cut slopes were studied. An attempt to classify the rocks into several groups according to their acid generation potentials was made. Acid Base Accounting(ABA) tests, commonly used as a screening tool in ARD predictions, were performed. Sixteen rock samples were classified into PAF(potentially acid forming) group and four rock samples into NAF(non-acid forming) group. The chemical analysis of water samples strongly suggested that ARD with high content of heavy metals and low pH could pollute the ground water and/or stream water.

  • PDF