• Title/Summary/Keyword: rock wool fibers

Search Result 9, Processing Time 0.024 seconds

Workers' Exposure to Airborne Fibers in the Man-made Mineral Fibers Producing and Using Industries (인조광물섬유 제품 제조 및 취급 근로자의 공기중 섬유 노출 평가 및 노동부 노출기준 고찰)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.221-231
    • /
    • 2005
  • In this study, occupational exposures to man-made mineral fibers (MMMFs) including glass wool, rock wool, and continuous glass filament fibers were determined and evaluated on the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV). A total of 171 personal samples collected from 4 glass wool fiber, 2 rock wool fibers, 4 continuous filament glass fiber products manufacturing and a glass fiber and rock wool insulations using industries, and determined respirable fibers concentrations using the National Institute for Occupational Safety and Health (NIOSH) Method 7400, "B counting rule. The fiber concentrations of samples from workers installing thermal insulations in a MMMF using industry showed the highest value: geometric mean (GM) = 0.73 f/cc and maximum = 2.9 f/cc, 70% of them were above the TLV, 1 f/cc. Workers' exposure level (GM= 0.032 f/cc) in the rock wool manufacturing industries was significantly higher than those of glass wool (GM=0.012 f/cc) and continuous filament glass fibers (GM=0.010 f/cc) manufacturing industries (p<0.01). No samples were more than the TLV in the MMMF manufacturing industries. There was a significant difference among companies in airborne fiber levels.

Size Distribution of Airborne Fibers in Man-made Mineral Fiber Industries (인조광물섬유 산업에서 발생된 공기중 섬유의 크기 분포)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.3
    • /
    • pp.213-220
    • /
    • 2005
  • Penetration and health effect of fibers was related with their diameters and length. The purpose of this study is to characterize and compare the diameter and length of airborne man-made mineral fibers(MMMF) or synthetic vitreous fibers in the related industries. The average fiber length of the continuous filament glass, rock wool, refractory ceramic, and glass wool fibers production industries approximately 27, 28, 35, $50-105{\mu}m$. Airborne glass fibers were longest in all the type of MMMFs. The average diameters of airborne fibers generated from refractory ceramic, rock wool, glass wool, continuous filament glass fibers production industries were approximately 1.0, 1.6, 1.5-4 and $10{\mu}m$, respectively. The percentages of respirable fibers(<$3{\mu}m$) were 94% for RCFs, 73% for rock wool fibers, 61.0% for glass fibers, and 1.6% for filament glass fibers. The length of glass fibers were the longest in all types of fibers, and length of the others were similar. The refractory ceramic fibers were smallest in diameters and highest in fraction of respirable fibers.

Analytical Variability of Airborne Man-made Mineral Fibers by Phase Contrast Microscopy (위상차 현미경법에 의한 인조광물섬유 분석 변이)

  • Shin, Yong Chul;Yi, Gwang Yong;Kim, Boowook
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2012
  • Objectives: This study was conducted to study the analytical variability of A & B counting rules in counting using a phase contrast microscope airborne fibers collected on filters in man-made mineral or vitreous fibers (MMMFs) industries. Methods: Fibers in filters were counted using A & B rules of NIOSH Method 7400. Intra-counter and inter-counter variations by fiber type and density were obtained. The types of MMMFs analyzed were glass wool fiber, rock wool fiber, slag wool fiber, and refractory ceramic fibers. The densities of fibers classified were <20 $fibers/mm^2,$ 20 - <50 $fibers/mm^2$, 50 - <100 $fibers/mm^2,$ and ${\geq}100$ $fibers/mm^2,$ respectively. Results: Intra-counter relative standard deviations by rule A were 0.084, 0.102, 0.071 for glass wool fibers, rock wool fibers and refractory ceramic fibers, and those by rule B were 0.139, 0.120 and 0.142, respectively. Inter-counter relative standard deviations by rule A were 0.281, 0.296, 0.180 for glass wool fibers, rock wool fibers and refractory ceramic fibers, and those by rule B were 0.396, 0.337 and 0.238, respectively. Conclusions: Intra-counter variation was not different significantly among fiber types (p>0.05), but B rule variation for ceramic fibers approximately 2 times greater than corresponding A rule estimates, and intra-counter and inter-counter variations were higher in the low fiber density.

Estimation of Total Dust Concentration Complying with the TLV of Airborne Man-made Mineral Fibers by Regression Analysis (회귀분석에 의한 공기중 인조광물 섬유 허용기준과 부합하는 총분진 농도의 추정)

  • Shin, Yong Chul;Yi, Gwang Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.9 no.2
    • /
    • pp.158-166
    • /
    • 1999
  • The purpose of this study was to investigate the correlation between airborne total dust and man-made mineral fibers (MMMF), and to estimate total dust concentration to maintain below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value (TLV$^{(R)}$) for the MMMF. The regression coefficients between airborne total dust concentrations and fiber concentrations determined in the industries producing glass fibers, rock wool. refractory ceramic and continuous filament glass fibers products were 0.41, 0.42, 0.20 and 0.19, respectively. The size characteristics of fibers as well as the amounts of contaminated non-fibrous dusts could affect the correlation intensities. When total dust and fiber exposure data were compared with the occupational exposure limits, there was a large gap between two evaluation results. The regression coefficient between total dust and fiber data was increased ($r^2=0.88$) in the process of insulation installation generating in the higher levels of glass or rock wool fibers. In this case, an estimated total dust concentration of glass wool or rock wool fibers complying with the ACGIH TLV (1 f/cc) was $1.7mg/m^3$. In conclusion, the total dust and fibers concentrations was highly correlated at the higher exposure levels so that total dust-monitoring data could be used to control simply and economically and to estimate worker's exposure to fibers.

  • PDF

Comparison of NIOSH Method 7400 A and B Counting Rules for Airborne Man-Made Vitreous Fibers (인조광물섬유에 대한 NIOSH 7400 방법의 A 및 B 계수규칙비교)

  • Sin, Yong Chul
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.11-16
    • /
    • 2006
  • There are many counting rules for analyzing man-made mineral fibers. The representatives are the NIOSH Method 7400 A and B counting rules. The two rules have different rules of length-to-width ratio(aspect ratio) and diameter. The A rule counts only fibers $>5{\mu}m$ in length, and only fibers with aspect ratio >3:1. The B rule counts only ends of fibers $>5{\mu}m$ in length and $<3{\mu}m$ in diameter, and only fibers with aspect ratio ${\geq}5:1$. The A counting rule had been used before the B counting rule was introduced. The purpose of this study is to compare the A and B counting rules for airborne fibers from various man-made mineral fibers(glass wool fibers, rock wool fibers, refractory ceramic fibers, and continuous filament glass fibers) industries. There were significantly differences between the paired counts of A and B rules in all types of fibers(p<0.05). A rule counts/B rule counts(A/B ratios) were 1.52 for glass fibers, 1.53 for rock wool fibers, 1.19 for RCF, and 1.82 for continuous filament glass fibers. The counting results by A and B counting rules were highly correlated in glass wool fibers, rock wool fibers and refractory ceramic fibers(RCF) samples (r=0.96 for all types of fibers) except continuous filament glass fibers(r=0.82). Regression equations to correct for the differences between counting rules were presented in this paper.

Domestic Rock Wool Toxicity Study on Respiratory System and Biopersistence Evaluation in Sprague-Dawely Rats (랫드에 주입된 국내산 암면의 호흡기 독성 및 생체내구성 평가)

  • Chung, Yong Hyun;Han, Jeong Hee;Kang, Min Gu;Lee, Sung Bae;Kim, Hyeon Yeong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.2
    • /
    • pp.127-138
    • /
    • 2009
  • Rock wool, a kind of asbestos substitutes, was analyzed for its physicochemical properties. After fivers of rock wool were instilled into rat lungs, These pathological changes were evaluated. In addition, the fibers in the lungs were counted and characterized after the lungs were treated for electron microscopical analysis. The lungs of rats showed pathological lesions such as granulomatous changes, but these lesions disappeared at 28 days groups after instilled rats. The rock wool fibers in the lungs decreased more 50 % after 28 days instilled into rat lungs. And rock wool showed early change in fiber compositions after 3 days compare with chrysotile showed after 7 days instilled into rat lungs. This study showed that the durability of rock wool in the lungs is more milder than chrysotile.

In Vitro Assessment of Cytotoxicity and Mutagenicity of Rock Wool Fibers (암면에 의한 세포독성 및 변이원성의 실험실적 평가)

  • Hong, Yun-Chul;Lee, Kwan-Hee
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.3 s.58
    • /
    • pp.555-566
    • /
    • 1997
  • This study was carried out to evaluate the cytotoxicity of rock wool fibers(RWFs) such as cell division disturbance, chromosomal and DNA damage, and mutagenicity using cultured cells. RWFs were the man made mineral fibers. In order to find the correlation between the cytotoxicity of RWFs and the phagocytic capacity of cells, the phagocytic processes were observed using scanning electron microscope. Cell division disturbance by RWFs was evaluated by the formation of multinucleated giant cells. The chromosomal damage was evaluated by the micronucleus formation. For the evaluation of oxidative DNA damage, 8-hydroxy-2'-deoxyguanosine (8-OH-dG) formation was measured utilizing calf thymus DNA. Mutagenicity was determined by the point mutation of HGPRT and the effect of RWFs on cell transformation was also observed. 1. Compared with the results of chrysotile, RWFs were no or little effect on the cell growth according to the results done by the tests of cell proliferation inhibition and relative plating efficiency. 2. The frequency of multinucleated giant cell formation was increased by the treatment of RWFs and it was dose-dependent. However, the effect of RWFs was weaker than that of chrysotile. 3. The number of micronuclei formed in the RWFs treated cells was between those of cells treated with chrysotile and those of untreated cells. 4. The 2 fold increase in the formation of 8-OH-dG in calf thymus DNA was observed in the cells treated with RWFs in the presence of $H_2O_2$. On the other hand, chrysotile had no effect on the 8-OH-dG formation. 5. RWFs had no effect on the HGPRT point mutation and cell transformation. These results showed that RWFs could induce chromosomal damage, cell division disturbance and oxidative DNA damage in the RWFs treated cells.

  • PDF

The Characteristics of Dispersed Asbestos Fibers Produced From Building Materials (건축재료에서 발생되는 석면입자의 특성 연구)

  • 유성환
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.9 no.3
    • /
    • pp.191-199
    • /
    • 1993
  • This paper describes the results of a systematic study to determine the characteristics of particle generated from various types of asbestos containing material(ACM) and manmade fiber material(MMFM) during operations of cutting and grinding in laboratory and workplace. Tests were conducted with a specially designed glove box which allowed complete sampling of the generated asbestos fibers. Specificially, air measurements were made during ACM and MMFM installation in building. All personal air samples collected were identified by polarized light microscopy(PLM), X-ray diffraction(XRD) and scanning electron microscope with energy dispersive X-ray analysis(SEM/EDXA). Also, the samples were counted by phase contrast microscope(PCM) in order to compare the results with the permissible exposure standard for workplace. Results indicate that the characterisitcs of fibers found in the roofing sheet, the ceiling and the wall insulation boards were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of asbestos, while the characteristics of fibers found in the ceiling insulation board, the floor tile and the sprayed on insulation products in parking area were identical to those of rock wool. The concentrations of airborne fibers from various building materials cut by a grinder for 5 minutes were in the ranges of 0.09 $\sim$ 1.71 fibers/cc(f/cc). The highest concentration(1.71f/cc) was found during grinding the wall insulation board which also contains rock wool. The airborne fiber concentrations generated by installing at workplace were ranged from 0.0009 to 0.029 f/cc. All asbestos fibers from the ceiling insulation board at workplace were less than 20$\mu$m in length and more than 20% of them had the average aspect ratio greater than 20. Therefore, for the purpose of decreasing asbestos and man-made fiber concentrations at the workplace, the ceiling and wall board should use strong binding material to increase the binding force with fiber. Also, the permissible exposure standard for workplace(2.0f/cc) in Korea should be constituted below the maximum avaiable concentration measured at glove box.

  • PDF

Concentration Characteristics of Indoor and Outdoor Airborne Total Fiber Particles and Identification of Asbestos in Gyeongnam Provinces (경남지역의 실내외 공기 중 총섬유 입자의 농도특성 및 석면 입자의 확인)

  • Park, Hee-Eun;Park, Jeong-Ho;Kim, Hyoung-Kab
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.22 no.2
    • /
    • pp.119-127
    • /
    • 2012
  • Objectives: The aim of this study is to identify concentration characteristics of indoor and outdoor airborne total fiber particles and asbestos in Gyeongnam Provinces. Methods: This study investigated concentration characteristics of indoor fiber particles from 748 schools and 38 public facilities as well as outdoor particles from 11 sites through PCM (phase contrast microscope). SEM/EDX (scanning electron microscope/energy dispersive using X-ray analysis) was used to obtain physicochemical information of asbestos fiber particles. The study identified asbestos rate in the 15 samples from indoor and outdoor airborne total fiber particles. Results: 1. The average indoor airborne concentrations of total fiber particles were $0.0011{\pm}0007$ f/cc in schools and $0.0015{\pm}0007$ f/cc in public facilities by PCM. Over 90% of the fiber particles were identified as single fibers. 2. The average outdoor airborne concentrations of total fiber particles were $0.0007{\pm}0002$ f/cc, and they were lower than those of indoor airborne concentrations. 3. The results showed that the form of asbestiform was diverse as skein of thread like form and long needle, which was relatively narrower than that of glass fiber and rock wool. 4. The results of SEM/EDX analysis of 15 areas where total fiber particle was relatively high showed that the form was rather similar to that of asbestos, but chemical composition was proven to be non-asbestos. Conclusions: The concentration of indoor and outdoor airborne total fiber particles of Gyeongnam Provinces satisfied the IAQ (Indoor air quality) level of 0.01 f/cc and asbestos was not found in most of the samples by SEM/EDX.