• Title/Summary/Keyword: rock temperature

Search Result 574, Processing Time 0.026 seconds

Geomechanical study of well stability in high-pressure, high-temperature conditions

  • Moradi, Seyyed Shahab Tabatabaee;Nikolaev, Nikolay I.;Chudinova, Inna V.;Martel, Aleksander S.
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.331-339
    • /
    • 2018
  • Worldwide growth in hydrocarbon and energy demand is driving the oil and gas companies to drill more wells in complex situations such as areas with high-pressure, high-temperature conditions. As a result, in recent years the number of wells in these conditions have been increased significantly. Wellbore instability is one of the main issues during the drilling operation especially for directional and horizontal wells. Many researchers have studied the wellbore stability in complex situations and developed mathematical models to mitigate the instability problems before drilling operation. In this work, a fully coupled thermoporoelastic model is developed to study the well stability in high-pressure, high-temperature conditions. The results show that the performance of the model is highly dependent on the truly evaluated rock mechanical properties. It is noted that the rock mechanical properties should be evaluated at elevated pressures and temperatures. However, in many works, this is skipped and the mechanical properties, which are evaluated at room conditions, are entered into the model. Therefore, an accurate stability analysis of high-pressure, high-temperature wells is achieved by measuring the rock mechanical properties at elevated pressures and temperatures, as the difference between the model outputs is significant.

Evolution of dynamic mechanical properties of heated granite subjected to rapid cooling

  • Yin, Tubing;Zhang, Shuaishuai;Li, Xibing;Bai, Lv
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.483-493
    • /
    • 2018
  • Experimental study of the deterioration of high-temperature rock subjected to rapid cooling is essential for thermal engineering applications. To evaluate the influence of thermal shock on heated granite with different temperatures, laboratory tests were conducted to record the changes in the physical properties of granite specimens and the dynamic mechanical characteristics of granite after rapid cooling were experimentally investigated by using a split Hopkinson pressure bar (SHPB). The results indicate that there are threshold temperatures ($500-600^{\circ}C$) for variations in density, porosity, and P-wave velocity of granite with increasing treatment temperature. The stress-strain curves of $500-1000^{\circ}C$ show the brittle-plastic transition of tested granite specimens. It was also found that in the temperature range of $200-400^{\circ}C$, the through-cracks induced by rapid cooling have a decisive influence on the failure pattern of rock specimens under dynamic load. Moreover, the increase of crack density due to higher treatment temperature will result in the dilution of thermal shock effect for the rocks at temperatures above $500^{\circ}C$. Eventually, a fitting formula was established to relate the dynamic peak strength of pretreated granite to the crack density, which is the exponential function.

A Study on Thermomechanical Failure Behavior of Granites for Radioactive Waste Repository (방사성폐기물 지층처분을 위한 화강암의 열역학적 파괴거동 연구)

  • 양형식;장명환
    • Tunnel and Underground Space
    • /
    • v.6 no.1
    • /
    • pp.69-74
    • /
    • 1996
  • High temperature confined compressive tests for thermomechanical failure criteria were carried out for Iksan and Whandeung granites. Authors suggested new polynomial type failure coefficient functions by which conventional Hoek-Brown failure criteria was extended to thermomechanical one. Obtained results are as follow; 1) Failure coefficients, m and s of Hoek and Brown's empirical failure criteria were decreased as temperature increased. 2) Theoretically calculated values by suggested equations and experimented ones by confined compressive test were well coincided.

  • PDF

Calculation of Deterioration Depth of Major Rock Type Slopes caused by Freezing-Thawing in Korea (국내 주요 암종별 사면의 동결-융해에 의한 열화심도 계산)

  • Kwon, O-Il;Baek, Yong;Yim, Sung-Bin;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.359-365
    • /
    • 2007
  • Freezing and thawing cycle is one of the major weathering-induced factors in the mechanical weathering of the rock mass. This natural process accelerates rock weathering process by breaking down the parent rock materials and makes soil or weathered rock formation in a rock slope surface zone. It can also cause reduction of the shear strength in slopes. It is important to calculate the deterioration depth caused by freezing-thawing for a slope stability analysis. In this study, deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was also carried out using collected temperature distribution data for last five years of several major cities in Korea. The analysis was performed based on the distributed rock types in study areas. Thermal conductivities, specific heats and densities of the calculation rocks are tested in the laboratory. They are thermal properties of rocks as input parameters for calculating deterioration depths. Finally, the paper is showing the calculated deterioration depths of each rock type slopes in several major cities of Korea.

Estimation of Deterioration Depth of Rock Slope due to Freezing-thawing (동결융해에 의한 암반사면의 열화심도 산정)

  • Baek Yong;Seo Yong-Seok;Jeong Ja-Hyea;Kwon O-Ii
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.325-335
    • /
    • 2005
  • Deterioration depths of rock slope due to freezing-thawing were calculated using the 1-D heat conductivity equation. The temperature distribution analysis was carried out using temperature distribution data for last two years of the five major cities such as Seoul, Daejeon, Pohang, Gwangju and Cangneung. The analysis was performed based on three different types of rocks, sandstone, granite and gneiss. This study has found that the deterioration depths tend to be greater with the increase of the thermal conductivity coefficient in Seoul, Daejeon and Pohang where showing relatively greater temperature deviations. Regarding the influence of rock types, deterioration depths turned out to be greater in Gwangju and Gangneung where show relatively smaller temperature deviations among the five cities, assuming these cities are on the granite with thermal conductivity of $55,200\;cal/m\timesday\times^{\circ}C$. In contrast, for the other rock types, cities of relatively geater temperature deviations show deeper deterioration depth than the others. Deterioration depths of rock slope in Korea due to freezing-thawing fumed out to be around 8.4 m to 10.7 m.

Array Design of HLW Canisters considering Thermal Concentrations (암반내 열접중을 고려한 고준위 폐기물 캐니스터의 배열설계)

  • 양형식;이춘우
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.256-260
    • /
    • 1994
  • HLW canister array was designed by FLLSSM program, considering the thermal concentration. Rock properties were chosen as those of granite, the most possible bedrock for the repository in Korea. It was shown that repository area and excavation volumes can be determined by the pitch or distance between canisters. Pitch can be reduced to 0.6 m assuming the tolerance temperature as 200$^{\circ}C$. Thermal concentration was reduced as storage time for cooling the canister passed. After 10 years of storage the thermal problems seemed to be negligible.

  • PDF

The Estimation of Temperature distribution around Gas Storage Cavern (저온가스 저장공동 주위암반의 온도분포 예측에 관한 연구)

  • Lee, Yang;Lee, Seung-Do;Moon, Hyun-Koo
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.16-25
    • /
    • 2004
  • As underground caverns have many advantages such as safety and operation, they can also be used for gas storage purpose. When liquefied gas is stored underground, the cryogenic temperature of the gas affects the stability of the storage cavern. In order to store the liquefied gas successfully, it is essential to estimate the exact temperature distribution of the rock mass around the caverns. The main purpose of this study is the development of theoretical solution to be able to estimate the temperature distribution around storage caverns and the assessment of the solution. In this study, a theoretical solution and a conceptual model for estimating two and three dimensional temperature distribution around the storage caverns are suggested. Based on the multi-dimensional transient heat transfer theory, the theoretical solution is successfully derived by assuming the caverns shape as simplified geometry. In order to assess the theoretical solution, by performing numerical experiments with this multi-dimensional model, the temperature distribution of the theoretical solution is compared with that of numerical analysis. Furthermore, the effects of the caverns size are investigated.

A Numerical Analysis to Estimate Disposal Spacing and Rock Mass Condition for High Efficiency Repository Based on Temperature Criteria of Bentonite Buffer (벤토나이트 완충재 설계 기준 온도에 따른 고효율 처분시스템 처분 간격 및 암반 조건 산정을 위한 수치해석적 연구)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop;Cho, Dongkeun
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.289-308
    • /
    • 2021
  • This study conducts coupled thermo-hydro-mechanical numerical modeling to investigate the maximum temperature and conditions for securing mechanical stability of the high-level radioactive waste repository when temperature criteria of bentonite buffer are 100℃ and 125℃, respectively. In case of temperature criterion of buffer as 100℃, the maximum temperatures at the interface between canister and buffer are calculated to be 99.4℃ and 99.8℃, respectively for a case with disposal tunnel spacing of 40 m and deposition hole spacing of 5.5 m and for the other case with disposal tunnel spacing of 30 m and deposition hole spacing of 6.5 m. In case of temperature criterion of buffer as 125℃, spacings of disposal tunnel and deposition hole could be decreased to 30 m and 4.5 m, respectively, which reduces the disposal area up to 55% compared to the disposal area of KRS+. According to analysis of mechanical stability for various disposal spacings, RMR of rock mass for KRS+ should be larger than 72.4 which belongs to good rock in RMR classification to prevent failure of rock mass. As disposal spacing is decreased, required RMR of rock mass is increased. In order to prevent failure of rock mass for a case with disposal tunnel spacing of 30 m and deposition hole spacing of 4.5 m, RMR larger than 87.3 is needed. However, mechanical stability of the repository is secured for all cases with RMR over 75 considering the enhancement of rock strength due to confining stress induced by swelling of the bentonite buffer and backfill.

Air Flow and Heat Storage Performance of Solar-Heated Greenhouse with Rock Bed Storage (자갈축열 태양열 온실의 공기유동 및 축열 성능)

  • Lee, Suk-Gun;Lee, Jong-Won;Lee, Hyun-Woo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.275-280
    • /
    • 2001
  • The purpose of this study was to investigate the air flow characteristics of the rock bed storage for solar-heated greenhouse design. Heat storage material was gravels and experiments were performed under constant inside temperature condition. The experimental parameters were operation method and air flow rate of fan. It was resulted that the temperature and amount of heat stored in rock-bed increased as the increase of air flow velocity and were more influenced by operation of inlet fan than outlet fan.

  • PDF