• Title/Summary/Keyword: rock temperature

Search Result 572, Processing Time 0.018 seconds

Numerical Study on Thermo-Hydro-Mechanical Coupling in Rock with Variable Properties by Temperature (암석의 온도의존성을 고려한 열-수리-역학적 상호작용의 수치해석적 연구)

  • 안형준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.13-19
    • /
    • 1997
  • It is necessary to study on thermo-hydro-mechanical effect at rock mass performing project such as radiowaste disposal in deep rock mass. In this study, thermo-hydro-mechanical coupling analysis which is considered interaction and the variation of rock properties induced by temperature increase was performed for the circular shaft when appling temperature of 20$0^{\circ}C$ at the shaft wall. The shaft is diameter of 2 m and under hydrostatic stress of 5 MPa. In the cases, thermal expansion by temperature increase progress from the wall to outward and thermal expansion could induce tensile stress over the tensile strength of rock mass at the wall. When rock properties were given as a function of temperature, thermal expansion increased, tensile stress zone expanded. Lately, water flow is activated by increase of permeability and decrease of viscosity.

  • PDF

Failure and Deformation Characteristics of Rock at High and Low Temperatures (고온 및 저온하에서의 암석의 변형, 파괴 특성)

  • 정재훈;김영근;이형원;이희근
    • Tunnel and Underground Space
    • /
    • v.2 no.2
    • /
    • pp.224-236
    • /
    • 1992
  • It is very important to determine the thermo-mechanical characteristics of the rock mass surrounding the repository of radioctive waste and the LPG storage cavern. In this study, Hwasoon-Shist. Dado-Tuff adn Chunan-Tonalite were the selected rock types. Temperature dependence of the mechanical properteis such as uniaxial compressive strength, tensile strength, Young's modulus was investigated by measuring the behaviour of these properties due to the variation of temperature. Also, the characteristics of strength and deformation of these rocks were examined through high-temperature triaxial compression tests with varing temperatures and confining pressures. Important results obtained are as follows: In high temperature tests, the uniaxial compressive strength and Yong's modulus of Tonalite showed a sligth increase at a temperature up to 300$^{\circ}C$ and a sharp decrease beyond 300$^{\circ}C$, and the tensile strength showed a linear decrease with increasing heating-temperature. In high-temperature triaxial compression test, both the failure stress and Young's modulus of Tonalite increased with the increase of confining pressure at constant heating-temperature, and the failure stress decreased at 100$^{\circ}C$ but increased at 200$^{\circ}C$ under a constant confining pressure. In low temperature tests, the uniaxial compressive and tensile strengths and Young's modulus of these rocks increased as the cooling-temperature is reduced. Also, the uniaxial compressive and tensile strengths of wet rock specimens are less than those of dry rock specimens.

  • PDF

A Study on Mechanical Behaviors of Granite and Sandstone at Low Temperature (저온하에서의 화강암, 사암의 역학적 거동에 관한 연구)

  • 안경문;박연준;이희근
    • Tunnel and Underground Space
    • /
    • v.7 no.2
    • /
    • pp.91-99
    • /
    • 1997
  • To stabilize the energy price, the more storage facilities of energy are required and among the storage methods of LPG and LNG, the method of storage at low temperature under normal confining pressure is considered. It is needed to understand the mechanical and thermal characteristics of rock under temperature variation so that the behaviors of rock can be predicted. In this paper, the variation of the rock charateristics of the Hwangdeung granite and the Boryung sandstone is studied at low temperature. The mechanical characteristics of rock under low temperatures are that as temperature decreased, unaxial compression strength and Young's modulus increased for Hwangdeung granite; strength and Young's modulus in wet condition were greater than those in dry condition. In the case of Boryung sandstone, as temperature decreases unaxial compression strength and Young's modulus increase but decrease below -10$0^{\circ}C$ in dry condition and below -16$0^{\circ}C$ in wet condtion. The mechanical characteristics of rock after cooling to previous temperature and thawing are that uniaxial compression strength and Young's modulus decrease as temperature decreases. Uniaxial compression strength and Young's modulus in wet conditon decrease more than those in dry condition. Brazilian tension strength decreases as temperature decreases.

  • PDF

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • v.15 no.2
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

Study on the mechanical properties test and constitutive model of rock salt

  • Zhao, Baoyun;Huang, Tianzhu;Liu, Dongyan;Liu, Yang;Wang, Xiaoping;Liu, Shu;Yu, Guibao
    • Geomechanics and Engineering
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2019
  • In order to study the mechanical properties of rock salt, triaxial compression tests under different temperatures and confining pressure are carried out on rock salt specimens, the influence of temperature and confining pressure on the mechanical properties of rock salt was studied. The results show that the temperature has a deteriorative effect on the mechanical properties of rock salt. With the increase of temperature, the peak stress of rock salt decreases visibly; the plastic deformation characteristics become much obvious; the internal friction angle increases; while the cohesion strength decreases. With the increase of confining pressure, the peak stress and peak strain of rock salt will increase under the same temperature. Based on the test data, the Duncan-Chang constitutive model was modified, and the modified Duncan-Chang rock salt constitutive model considering the effect of temperature and confining pressure was established. The stress-strain curve calculated by the modified model was compared with the stress-strain curve obtained from the test. The close match between the test results and the model prediction suggests that the modified Duncan-Chang constitutive model is accurate in describing the behavior of rock slat under different confining pressure and temperature conditions.

A Study on Temperature Dependency of Strength and Deformation Behavior of Rocks (암석의 강도 및 변형거동의 온도의존성에 관한 연구)

  • 이형원;이정인
    • Tunnel and Underground Space
    • /
    • v.6 no.2
    • /
    • pp.101-121
    • /
    • 1996
  • The thermomechanical characteristics of rocks such as temperature dependency of strength and deformation were experimentally investigated using Iksan granite, Cheonan tonalite and Chung-ju dolomite for proper design and stability analysis of underground structures subjected to temperature changes. For the temperature below critical threshold temperature $T_c$, the variation of uniaxial compressive strength, Young's modulus, Brazilian tensile strength and cohesion with temperature were slightly different for each rock type, but these mechanical properties decreased at the temperatures above $T_c$ by the effect of thermal cracking. Tensile strength was most affected by $T_c$, and uniaxial compressive strength was least affected by $T_c$. To the temperature of 20$0^{\circ}C$ with the confining prressure to 150 kg/$\textrm{cm}^2$, failure limit on principal stress plane and failure envelope on $\sigma$-$\tau$ plane of Iksan granite were continuously lowered with increasing temperature but those of Cheonan tonalite and Chung-ju dolomite showed different characteristics depending on minor principal stress on principal stress plane and normal stress on $\sigma$-$\tau$ plane. The reason for this appeared to be the effect of rock characteristics and confining pressure. Young's modulus was also temperature and pressure dependent, but the variation of Young's modulus was about 10%, which was small compared to the variation of compressive strength. In general, Young's modulus increased with increasing confining pressure and increased or decreased with increasing temperature to 20$0^{\circ}C$ depending on the rock type.

  • PDF

Acquired resistance of rock bream (Oplegnathus fasciatus) against rock bream iridovirus (RBIV) through undergoing low water temperature period

  • Zenke, Kosuke;Yoon, Ki Joon;Kim, Min Sun;Choi, Seung Hyuk;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.85-89
    • /
    • 2014
  • Water temperature is a key environmental factor controlling the epizootics of viral diseases in fish. High water temperature is associated with the rapid spread of rock bream iridovirus (RBIV) disease and with high mortality of RBIV infected fish. Although protection of fish against iridoviral disease by active immunization has been reported, little information is available concerning whether fish survived from an epizootic of iridoviral disease can naturally acquire resistance against the viral disease. In the present study, we have demonstrated that juvenile rock bream, which survived from a natural epizootic of RBIV, acquired resistance against recurrence or reinfection of RBIV, and this resistance was established during the subsequent low water temperature period. Furthermore, the possible involvement of the adaptive humoral immune response in the resistance of the juvenile rock bream was suggested by in vivo neutralization experiment.

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF

Transient heat conduction in rock mass around arch shape cold storage cavern and estimation of in-situ thermal properties (아치형 냉동저장공동 주위암반의 비정상상태 열전도 특성 및 열물성 평가)

  • Synn, Joong-Ho;Park, Yeon-Jun;Kim, Ho-Yeong;Park, Chan
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.27-35
    • /
    • 1999
  • The characteristics of heat conduction for the heat source boundary like an arch shape cavern are different from those for the semi-infinite or circular boundary which can be driven theoretically. A new form of transient heat conduction equation in rock mass around the arch shape cavern is evaluated with analyzing the pattern of the rock temperature distribution measured at the cold storage pilot plant. The new equation, which is driven by adopting a shape function, $SF=\sqrt{logx_0/log(x_0+x)}$ to the solution for a semi-infinite boundary, has the semi-radial form of temperature variation with distance. And, thermal properties of rock mass are estimated by comparing the rock temperature distributions by this equation with those by measurement. Thermal conductivity and specific heat of rock mass are estimated as giving the difference of 20~25% compared to those of laboratory scale. This difference seems to be caused by discontinuity like joint and water content in rock mass.

  • PDF

A study on the relationship between the thermal properties of rock and the enviroment in underground spaces (암반 열물성과 지하공간 환경분석 연구)

  • Lee, Chang-Woo
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.335-341
    • /
    • 1996
  • This fundamental study analyzes the relationship between rock thermal properties and psychrometric properties in underground space and has a ultimate goal to develope technologies for predicting major environmental variables. The study is divided into 2 subjects (1) developement of a basic model for predicting temperature and humidity, (2) analysis of the validity of the model through application to a local underground storage space for military supplies. The basic model is built for the network of tunnel-shaped underground spaces. The model takes into account rock thermal properties and changes in moisture content in the air due to condensation/evaporation on the rock surface. Using lumped-parameter analytical method, heat flux from or to the surrounding rock is calculated and then the psychrometric properties(air quantity, pressure, temperature, humidity) are estimated through network simulation. The model can be utilized regardless of the tunnel type. The study site is a local storage space built in rock, mainly granite gneiss and quartz-porphyry. It is a U-shaped tunnel, 593.5m long and 6x6.5m wide. Relative humidity inside has to be strictly controlled under 55% to avoid erosion of a certain types of supplies stored in 6 chambers with the capacity of 300~1.000 ton. The thermal conductivity varies between 2.734 and 2.779W/m$^{\circ}C$ and the thermal diffusivity is in the range of 1.119 and $1.152{\times}10^{-6}\;m^2/s$ the specific heat between 910 and $920\;J/kg^{\circ}C$. Relative errors of the predicted values of dry/wet temperature and relative humidity are 0.8~3.0%, 0~7.5% and 0~7.0%, respectively. Apparent errors associated with the rock surface temperature seems to be partly due to the intrinsic limitations in the infrared thermometer used in this study.

  • PDF