• Title/Summary/Keyword: rock support design

Search Result 165, Processing Time 0.024 seconds

A Study on the Support Design for Underground Excavation Based on the Rock-Support Interaction Analysis (암반-지보 거동분석에 의거한 지하굴착 지보설계에 관한 연구)

  • 김혁진;조태진;김남연
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • Engineering rock mass classification is extensively used to determine the reasonable support system throughout the tunneling process in the field. Selection of support system based on the results of engineering rock mass classification is simple and straight-forward. However, this method cannot consider the effect of in-situ stresses, mechanical properties of support material, and support installation time on the behavior or rock-support system To handle the various conditions encountered in the underground excavation sites rock-support system. To handle the various conditions encountered in th eunderground excavation sites rock-support interaction program has been developed. This program can analyze the interaction between rock mass and support materials and also can simulate the tunnel excavation-support insstallation process by controlling the support installation time and the stiffness of support system. Practical applicability of this program was verfied by comparing the results of support design to those from rock mass classification for virtual underground excavation at the drilling site KD-06 in Geoje island.

  • PDF

Selection of Optimum Support based on Rock Mass Classification and Monitoring Results at NATM Tunnel in Hard Rock (경암지반 NATM 터널에서 암반분류 및 계측에 의한 최적지보공 선정에 관한 연구)

  • 김영근;장정범;정한중
    • Tunnel and Underground Space
    • /
    • v.6 no.3
    • /
    • pp.197-208
    • /
    • 1996
  • Due to the constraints in pre site-investigation for tunnel, it is essential to redesign the support structures suitable for rock mass conditions such as rock strength, ground water and discontinuity conditions for safe tunnel construction. For the selection of optimum support, it is very important to carry out the rock mass classification and in-situ measurement in tunnelling. In this paper, in a mountain tunnel designed by NATM in hard rock, the selectable system for optimum support has been studied. The tunnel is situated at Chun-an in Kyungbu highspeed railway line with 2 lanes over a length of 4, 020 m and a diameter of 15 m. The tunnel was constructed by drill & blasting method and long bench cut method, designed five types of standard support patterns according to rock mass conditions. In this tunnel, face mapping based on image processing of tunnel face and rock mass classification by RMR carried out for the quantitative evaluation of the characteristics of rock mass and compared with rock mass classes in design. Also, in-situ measurement of convergence and crown settlement conducted about 30 m interval, assessed the stability of tunnel from the analysis of monitoring data. Through the results of rock mass classification and in-situ measurement in several sections, the design of supports were modified for the safe and economic tunnelling.

  • PDF

Effect of Vertical Change of the Rock Mass Characteristics on Rock Mass Classification by Numerical Analysis (암반특성의 수직변화가 암반분류에 미치는 영향에 관한 수치해석적 연구)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Woo, Sung-Won;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.476-479
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the vertical direction. However, such case is seldom encountered in practice and not applicable when the properties vary along the vertical direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the vertical direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5{\sim}1.0D$(vertical direction) on the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

Permanent Support for Tunnels using NMT

  • Barton, Nick
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 1995.03a
    • /
    • pp.1-26
    • /
    • 1995
  • Key aspects of the Norwegian Method of Tunnelling (NMT) are reviewed. These include a predictive method of support design using the six-parameter Q-system of rock mass characterisation. The rock mass rating or Q-value is updated during tunnel driving. The designed tunnel support generally consists of wet process, steel fibre reinforced shotcrete combined with fully grouted, untensioned rock bolts, Even in poor rock conditions S(fr) + B usually acts as the final rock reinforcement and tunnel lining. Since it is a drained lining, it is very economic compared to cast concrete with membranes. Light, free-standing steel liners are used to prevent water affecting the runnel environment. Rock mass conditions, and hence lining design and cost estimation can be assessed by careful use of seismic surveys. Relationships between the P-wave velocity, the rock mass deformation modulus and the Q-value have recently been established, where tunnel depth, rock porosity and the uniaxial compression strength of the rock are important variables. The rock mass modulus estimate, and simple index testing of the joints, provide the key input which joints are discretely represented (either in two dimensions with the UDEC code or in three dimensions with the 3DEC code) is generally favoured compared to continuum analysis. The latter may give a misleading impression of uniformity and deformations tend to be understimated. Q-system NMT designs of S(fr) + B (fibre reinforced shotcrete and bolting) are numerically checked and adjustments made to bolt capacities and shotcrete thickness if overloading is evident around the modelled profile.

  • PDF

Rock-support Interaction behavior for Ground Condition Based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.155-161
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rook-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These cures are very useful to predict the required support pressure in the initial design stage.

  • PDF

Rock-support Interaction behavior for Ground Condition based on Numerical Modelling (암반조건에 따른 암반-지보 반응거동의 수치해석적 연구)

  • 전양수;한공창;신중호
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.403-409
    • /
    • 2000
  • It is very important to control the final load that acts on a support system, in tunnel engineering. A reliable analysis is needed to carry out technically reasonable design and safe construction. Also, a series of procedures of construction and the rock-support interaction behavior must be considered. Most existing studies have been performed as the limited analysis based on the simplified assumption. In this study, through the analysis of a circular tunnel using a 2-D finite differential code, the rock-support interaction behaviors in the variation of rock and stress conditions are analyzed and compared with the results from the closed form solutions. Consequently, more realistic rock-support interaction curves are obtained by including the effects of initial stresses and rock condition. These curves are very useful to predict the required support pressure in the initial design stage.

  • PDF

Rock Support Design of Bakun Tunnelling Project in Sarawak, Malaysia (바쿤 가배수로 터널의 최적지보설계)

  • 지왕률
    • Tunnel and Underground Space
    • /
    • v.8 no.4
    • /
    • pp.296-306
    • /
    • 1998
  • Ongoing huge Bakun Hydropower project is including the construction of a 210 m height hydroelectric rockfill dam with an installed capacity of 2,520 MW and a power transmission system connecting to the existing networks between Sarawak and peninsula Malaysia. In order to allow the main dam construction during the dry season, the Ballui river will have to be detoured through 3 concrete lined diversion tunnels with an internal diameter of 12 m and a length of 1,400 m each. The geology of Bakun site belongs to the several thousand meters thick Belaga formation deposited from the late Cteteceous to the early Teriary in the Northwest Borneo geosyncline. The orientation of the bedding plane, strike at N55$^{\circ}$E to N70$^{\circ}$E and dip at 50$^{\circ}$SE to 70$^{\circ}$SE, is developed uniformly in Bakun sedimentary rocks. Rock mechanical characteristics of Bakun site have been classified into 4 rock mass types(RMT) depending on the degree of weathering and the occurrence of rock jointing with RMR. Graywacke(Sandstone) as well as Shale can take place together in the same rock mass type if their rock mass properties are similar. It was summarized the rock support type and support system design of underground diversion tunnels in view of rock mechanics.

  • PDF

Effect of the Rock Characteristics Condition on the Behavior of Tunnel by Numerical Analysis (수치해석에 의한 암반특성의 변화가 터널에 미치는 영향)

  • Kwon, Soon-Sub;Lee, Jong-Sun;Kim, Kyoung-Ho;Lee, Jun-Woo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.375-378
    • /
    • 2007
  • The selection of the support system is an important design parameter in design and construction of the tunnel using the new Australian tunnel method. It is a common practice to select the support based on the rock mass grade, in which the rock mass is classified into five rock groups. The method is applicable if the characteristics of the rock mass are uniform in the direction of tunnel excavation. However, such case is seldom encountered in practice and not applicable when the properties vary along the longitudinal direction. This study performs comprehensive three dimensional finite difference analyses to investigate the ground deformation pattern for cases in which the rock mass properties change in the direction of the tunnel axis. The numerically calculated displacements at the tunnel crown show that the displacement is highly dependent on the stiffness contrast of the rock masses. The results strongly indicate the need to select the support type $0.5\sim1.0D$ before the rock mass boundary. The paper proposes a new guideline for selecting the support type based the results of the analyses.

  • PDF

A study on the determination of shear strength and the support design of pre-failed rock slope (일차파괴된 암반사면의 전단강도 및 보강설계법 고찰)

  • 조태진;김영호
    • Tunnel and Underground Space
    • /
    • v.5 no.2
    • /
    • pp.104-113
    • /
    • 1995
  • Shear strength of the discontinuity on which the pre-failure of rock slope was occurred during surface excavation was measured through the direct shear test using core samples obtained in-situ. Internal friction angle was increased as the roughness of discontinuity surface(JRC) was increased. Results of the tilt test using core samples of higher JRC also showed very similar trend as those of the direct shear test. When the samples replicated from natural cores were used int he tilt test, results of friction angles showed almost perfect continuation of the residual friction angles from the direct shear test. However, when the gouge material existed in the discontinuity the internal friction angle strongly depended upon the rate of filling thickness to the height of asperity irrespective of the JRC. Based on the results of both direct shear test and tilt test internal friction angle and cohesion of discontinuity, which reflect the in-situ conditions fo pre-sliding failure and also can be used for the optimum design of support system, were assessed. Two kinds of support measures which were expected to increase the stability of rock slope were considered; lowering of slope face angle and installation of rock cable. But, it was found that the first method might lead to more unstable conditions of rock slope when the cohesion of discontinuity plane was negligibly low and in that case the support systems of any kind which could exert actual resisting force were needed to ensure the permanent stability of rock slope.

  • PDF

Applicaton of a Geomechanical Classification for Rock Slope (암반 사면에 대한 새로운 암반 분류안의 적용)

  • 김대복
    • Tunnel and Underground Space
    • /
    • v.4 no.3
    • /
    • pp.215-227
    • /
    • 1994
  • Rock Mass classifications have been developed in many European countries. The most widely used classification methods are the Rock Mass Rating (RMR) system proposed by Bieniawski(1973) and the Q-system developed By Barton et al. (1974). These methods are also adopted at many mountain tunnels and subway sites in our country. Here, a geomechanical classification for slopeds in rock, the "Slope Mass Rating"(SMR) is presented for the preliminary assessment of slope stabiliyt. This method can be applied to excavation and support design in the front part of tunnel and cutting area as a guide line and recommendation on support methods which allow a systemmetic use of geomechanical classification for rock slopes.

  • PDF