• Title/Summary/Keyword: rock specimens

Search Result 291, Processing Time 0.029 seconds

Automatic Fracture Detection in CT Scan Images of Rocks Using Modified Faster R-CNN Deep-Learning Algorithm with Rotated Bounding Box (회전 경계박스 기능의 변형 FASTER R-CNN 딥러닝 알고리즘을 이용한 암석 CT 영상 내 자동 균열 탐지)

  • Pham, Chuyen;Zhuang, Li;Yeom, Sun;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.31 no.5
    • /
    • pp.374-384
    • /
    • 2021
  • In this study, we propose a new approach for automatic fracture detection in CT scan images of rock specimens. This approach is built on top of two-stage object detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The use of rotated bounding box plays a key role in the future work to overcome several inherent difficulties of fracture segmentation relating to the heterogeneity of uninterested background (i.e., minerals) and the variation in size and shape of fracture. Comparing to the commonly used bounding box (i.e., axis-align bounding box), rotated bounding box shows a greater adaptability to fit with the elongated shape of fracture, such that minimizing the ratio of background within the bounding box. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. To validate the applicability of the proposed approach, we train and test our approach with a number of CT image sets of fractured granite specimens with highly heterogeneous background and other rocks such as sandstone and shale. The result demonstrates that our approach can lead to the encouraging results on fracture detection with the mean average precision (mAP) up to 0.89 and also outperform the conventional approach in terms of background-to-object ratio within the bounding box.

Evaluation of Stress Thresholds in Crack Development and Corrected Fracture Toughness of KURT Granite under Dry and Saturated Conditions (포화유무에 따른 KURT 화강암의 균열손상 기준 및 수정 파괴인성 측정(Level II Method))

  • Kim, Jin-Seop;Hong, Chang-Ho;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.256-269
    • /
    • 2020
  • The objective of this study is to evaluate the stress thresholds in crack development and the corrected fracture toughness of KURT granite under dry and saturated conditions. The stress thresholds were identified by calculation of inelastic volumetric strain from an uniaxial compression test. The corrected fracture toughness was estimated by using the Level II method (Chevron Bend specimen), suggested by ISRM (1988), in which non-linear behaviors of rock was taken into account. Average crack initiation stress(σci) and crack damage stress(σcd) under a dry condition were 91.1 MPa and 128.7 MPa. While, average crack initiation stress(σci) and crack damage stress(σcd) under a saturated condition were 58.2 MPa and 68.2 MPa. The crack initiation stress and crack damage stress of saturated ones decreased 36% and 47% respectively compared to those of dry specimens. A decrease in crack damage stress is relatively larger than that of crack initiation stress under a saturated condition. This indicates that the unstable crack growth can be more easily generated because of the saturation effect of water compared to the dry condition. The average corrected fracture toughness of KURT granite was 0.811 MPa·m0.5. While, the fracture toughness of saturated KURT granite(KCB) was 0.620 MPa·m0.5. The corrected fracture toughness of rock in saturated condition decreases by 23.5% compared to that in dry condition. It is found that the resistance to crack propagation decreases under the saturated geological condition.

Physical Properties Related to Metamorphic Grade of the Hornfels Exposed Around Mt. Palgong (팔공산 주변 혼펠스의 변성도에 따른 물리적 특성)

  • Shin, Kuk-Jin;Oh, Je-Heon;Jung, Yong-Wook;Kim, Gyo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.5
    • /
    • pp.25-35
    • /
    • 2014
  • The sedimentary rocks exposed around Mt. Palgong were subjected to metamorphism due to a granitic magma intrusion at late Cretaceous, and they eventually metamorphosed to hornfels by the action of both hydrothermal solution and high temperature supplied from the magma. The hornfels zone around the granite body ranges from 2.0 to 3.5 km in width but the boundary between hornfels and sedimentary rocks is not obviously defined because the metamorphic grade gradually decreases with distance from the granite boundary. A series of laboratory tests on 350 core specimens made by 35 fresh rock blocks obtained from 5 selected locations around Mt. Palgong are performed to verify the variation of physical and mechanical properties related to metamorphic grade of the rock. Water content and absorption ratio of the hornfels linearly increase with distance to the granite boundary whereas dry unit weight, p-wave velocity, point load strength, and slake durability index linearly decrease with the distance. These results imply that the metamorphic grade of the hornfels also linearly decrease with the distance to granite boundary. Empirical equations for the variation of properties with the distance to granite boundary and relationship between a property and another one are deduced by regression analyses. And a criteria for classification of hornfels exposed in the study area based on the P-wave velocity and point load strength is proposed.

Performance Improvement and Durability Evaluation of Shotcrete for Permanent Tunnel Support (터널 영구 지보재로서의 숏크리트 고성능화 및 내구성 평가에 관한 연구)

  • Lee, Sang-Pil;Ryu, Jong-Hyun;Lee, Sang-Don;Jeon, Seok-Won;Lee, Chung-In
    • Tunnel and Underground Space
    • /
    • v.17 no.4
    • /
    • pp.266-284
    • /
    • 2007
  • Recently, many efforts have been made to construct the first unlined tunnel, without in-situ concrete lining, in Korea. However, the lack of reliability in the performance of shotcrete as permanent tunnel support prevented from its realization. Shotcrete has been regarded to have significant problems in field application and long term performance because of unsatisfactory strength level and durability compared to those of European countries. In this study, the high strength shotcrete satisfying compressive strength over 40 MPa and flexural strength over 4.5 MPa was developed from optimized mix design. The type of accelerators and the amount of silica fume were selected as the main factors in mixing process and the analyses were carried out up to the elapsed time of 2 years. In order to evaluate the short term durability of shotcrete, an array of laboratory test consisting of freeze-thaw, carbonation chloride penetration and permeability test was performed. For long-term durability tests, specimens have been put in an operated highway tunnel to expose them to the similar environment when they are actually used as an unlined tunnel support. From the strength and durability tests, it was found that only alkali-free based accelerator satisfied the target strength of this study and also, the developed shotcrete showed very high performance in its durability.

Development of a roller supported piston type loading platen reducing the frictional restraint along the interfaces between the specimen and platens under the biaxial loading condition (이축압축 조건에서 실험체/재하판 경계면상의 마찰저항 감소를 위한 롤러 지지된 피스톤 형태의 하중재하판의 개발)

  • SaGong, Myung;Kim, Se-Chyul;Lee, J.S.;Park, Du-Hee
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.3
    • /
    • pp.303-312
    • /
    • 2008
  • Multi-axial compression tests have been frequently adopted for the evaluation of material properties of rock cores and rock fracture model tests. Special care has to be applied on the boundary condition between the specimen and loading platen to draw the precise test results of the multi-axial compression tests. With the use of dry steel platen, the stress rotation will occur, due to the frictional restraint from the boundary between the specimen and loading platen. The restraint will deviate the expected test results under the conditions of the given external pressures. Various methods have been applied to reduce the side restraint along the specimen/loading platen interface. The steel brush type loading platen is one example of the attempts. In this paper, a new type of loading platen is introduced to overcome the limitation caused by the use of the brush type loading platen, which requires some internal space for the installation of the brushes. The new type of loading platen, roller supported steel piston type loading platen. is constituted of shot steel pistons which have sufficient stiffness to deliver the external pressure and the shaft type roller installed at the rear of the pistons. The pistons are designed to follow the local deformation of the specimens. In this paper, structural details of the loading platen are presented and frictional and biaxial compression tests results are shown to verify the required functions of the loading platen. Furthermore, calibration process is followed by a comparison between the test results and numerical analyses.

  • PDF

Changes on Physical Property of Ilmenite due to Microorganism (미생물에 의한 티탄철석의 물리적 특성 변화)

  • Park, Young Ho;Kang, Dae Wan;Kang, Seong-Seung
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.321-329
    • /
    • 2012
  • Laboratory tests for measuring absorption, porosity, P-wave velocity and uniaxial compressive strength (UCS) were performed to examine weathering characteristics of ilmenite by microorganism. Physical property changes were quantitatively estimated with comparing culture period on the condition of abiotic oxidation without microorganism and biooxidation with microorganism. As a result, the measured pH during 45 days was distributed in the range from 3.82 to 4.26, on the other hand, biooxidation showed the range from 2.20 to 2.57. The measured absorption according to microorganism and culture period represented 0.052% at final stage in the case of abiotic oxidation and 0.073% in the case of biooxidation. Porosity showed 0.206% at final stage in the case of abiotic oxidation and 0.281% in the case of biooxidation. In general, the values by biooxidation showed higher than that by abiotic oxidation. Change range of P-wave velocity with culture period showed that the measured value as 1410 m/s at final stage in the case of biooxidation was lower than 1886 m/s of that in the case of abiotic oxidation. The UCS was decreased with increasing culture period in all specimens and represented 241.1 MPa at final stage in the case of abiotic oxidation and 140.0 MPa in the case of bioxidation. In conclusion, it implies that influence of physical property on ilmenite by biooxidation related with microorganism was larger than that by abiotic oxidation.

An Experimental Study on the Dynamic Increase Factor and Strain Rate Dependency of the Tensile Strength of Rock Materials (암석재료 인장강도의 동적 증가계수 및 변형률 속도 의존성에 대한 실험적 연구)

  • Oh, Se-Wook;Choi, Byung-Hee;Min, Gyeong-Jo;Jung, Yong-Bok;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.39 no.1
    • /
    • pp.10-21
    • /
    • 2021
  • Brittle materials such as rocks and concretes exhibit large strain-rate dependency under dynamic loading conditions. This means that the mechanical properties of such materials can significantly be varied according to load velocity. Thus, the strain-rate dependency is recognized as one of the most important considerations in solving problems of blast engineering or rock dynamics. Unfortunately, however, studies for characterizing the dynamic properties of domestic rocks and other brittle materials are still insufficient in the country. In this study, dynamic tensile tests were conducted using the Hopkinson pressure bar apparatus to characterize the dynamic properties of Geochang granite and high-strength concrete specimens. The dynamic Brazilian disc test, which is suggested by ISRM, and the spalling method were applied. In general, the latter is believed to have some advantages in experiments under high-strain rate deformation. It was found from the tests that there were no significant difference between the dynamic tensile strengths obtained from the two different test methods for the two materials given. However, this was not the expected result before the tests. Actually, authors expected that there be some differences between them. Hence, it is thought that further investigations are needed to clarify this results.

Evaluation of Segment Lining Fire Resistance Based on PP Fiber Dosage and Air Contents (세그먼트 라이닝의 PP섬유 혼입량과 공기량 변화에 따른 화재저항 특성 평가)

  • Choi, Soon-Wook;Kang, Tae Sung
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.469-479
    • /
    • 2021
  • As a material for preventing spalling of concrete, the effectiveness of PP fiber has already been confirmed. However, it is necessary to consider the maximum temperature that occurs during a fire, and to solve the mixing problem and the strength reduction problem that occur depending on the mixing amount. In this study, the fire resistance performance of tunnel segment linings according to the PP fiber content and air volume under the RABT fire scenario was investigated. As a result, no spalling or cross-sectional loss occurred in all test specimens, and when the PP fiber content was small, the maximum temperature was relatively high and the maximum temperature arrival time was also fast. On the other hand, no trend was found for the maximum temperature and arrival time according to the difference in air volume. In the internal temperature distribution results for the PP fiber mixing amount of 0.75, 1.0, 1.5, and 2.0 kg/m3, the results of 0.75 and 1.0 kg/m3 showed similar temperature distribution, and the results of 1.5 and 2.0 kg/m3 were similar. It was confirmed that the internal temperature distribution tends to decrease at the same depth when the amount of PP fiber mixed is large, and it was confirmed that a remarkable difference occurred from the results of 1.0 kg/m3 and 1.5 kg/m3 of PP fiber mixed amounts.

Study on the Direct Tensile Test for Cemented Soils Using a Built-In Cylinder (내장형 실린더를 이용한 시멘트 고결토의 인장시험 방법에 관한 연구)

  • Park, Sung-Sik;Lee, Jun-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1505-1516
    • /
    • 2014
  • In this study, a cylinder embedded within cemented soils was used to cause directly tensile failure of cemented soils. An existing dumbbell type direct tensile test and a split tensile test that is most general indirect tensile test were also carried out to verify the developed built-in cylinder tensile test. Testing specimens with two different sand/cement ratios (1:1 and 3:1) and two curing periods (7 and 28 days) were prepared and tested. Total 10 specimens were prepared for each case and their average value was evaluated. Unconfined compression tests were also carried out and the ratio of compressive strength and tensile strength was evaluated. The tensile strength determined by built-in cylinder tensile test was slightly higher than that by dumbbell type direct tensile test. The dumbbell type test has often failed in joint part of specimen and showed some difficulty to prepare a specimen. Among three tensile testing methods, the standard deviation of tensile strength by split tensile test was highest. It was shown that the split tensile test is applicable to concrete or rock with elastic failure but not for cemented soils having lower strength.

TENSILE BOND STRENGTH OF ALUNMINA CORE TREATED BY ION ASSISTED REACTION (이온보조반응법으로 처리한 알루미나 코아의 인장결합강도에 관한 연구)

  • Kim, Hyeong-Seob;Woo, Yi-Hyung;Kwon, Kung-Rock;Choi, Boo-Byung;Choi, Won-Kook
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.5
    • /
    • pp.704-723
    • /
    • 2000
  • This study was undertaken to evaluate the tensile bond strength of In-Ceram alumina core treat-ed by ion assisted reaction(IAR). Ion assisted reaction is a prospective surface modification technique without damage by a keV low energy ion beam irradiation in reactive gas environments or reactive ion itself. 120 In-Ceram specimens were fabricated according to manufacturer's directions and divided into six groups by surface treatment methods of In-Ceram alumina core. SD group(control group): sandblasting SL group: sandblasting + silane treatment SC group: sandblasting + Siloc treatment IAR I group: sandblasting + Ion assisted reaction with argon ion and oxygen gas IAR II group: sandblasting + Ion assisted reaction with oxygen ion and oxygen gas IAR III group: sandblasting + Ion assisted reaction with oxygen ion only For measuring of tensile bond strength, pairs of specimens within a group were bonded with Panavia 21 resin cement using special device secured that the film thickness was $80{\mu}m$. The results of tensile strength were statistically analyzed with the SPSS release version 8.0 programs. Physical change like surface roughness of In-Ceram alumina core treated by ion assistad reaction was evaluated by Contact Angle Measurement, Scanning Electron Microscopy, Atomic Force Microscopy; chemical surface change was evaluated by X-ray Photoelectron Spectroscopy. The results as follows: 1. In tensile bond strength, there were no statistically significant differences with SC group, IAR groups and SL group except control group(P<0.05). 2. Contact angle measurement showed that wettability of In-Ceram alumina core was enhanced after IAR treatment. 3. SEM and AFM showed that surface roughness of In-Ceram alumina core was not changed after IAR treatment. 4. XPS showed that IAR treatment of In-Ceram alumina core was enabled to create a new functional layer. A keV IAR treatment of In-Ceram alumina core could enhanced tensile bond strength with resin cement. In the future, this ion assisted reaction may be used effectively in various dental materials as well as in In-Ceram to promote the bond strength to natural tooth structure.

  • PDF