• 제목/요약/키워드: rock material

검색결과 747건 처리시간 0.026초

Detection of near surface rock fractures using ultrasonic diffraction techniques

  • Selcuk, Levent
    • Geomechanics and Engineering
    • /
    • 제17권6호
    • /
    • pp.597-606
    • /
    • 2019
  • Ultrasonic Time-of-Flight Diffraction (TOFD) techniques are useful methods for non-destructive evaluation of fracture characteristics. This study focuses on the reliability and accuracy of ultrasonic diffraction methods to estimate the depth of rock fractures. The study material includes three different rock types; andesite, basalt and ignimbrite. Four different ultrasonic techniques were performed on these intact rocks. Artificial near-surface fracture depths were created in the laboratory by sawing. The reliability and accuracy of each technique was assessed by comparison of the repeated measurements at different path lengths along the rock surface. The standard error associated with the predictive equations is very small and their reliability and accuracy seem to be high enough to be utilized in estimating the depth of rock fractures. The performances of these techniques were re-evaluated after filling the artificial fractures with another material to simulate natural infills.

하상사력재를 이용한 CFRD의 연구 (A Study of CFRD using a Gravel Fill)

  • 정찬균;노태길;이송
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.842-853
    • /
    • 2008
  • In the construction of dam, the key factor which decides the type of dam is security of materials resource. Because of the large scale earth work, the ability to supply the materials is essential part about economical efficiency. The research is the case study about controlling the plan to secure the material resources in the design of Buhang multipurpose dam. In case of Buhang multipurpose dam, at that time of basic design, it was planned to use a rock fill material. From the detail investigation about the river bed accumulative layer widely spread on the submerged district on the basic design, the research is accomplished to replace rock material with gravel material. After the investigation of whole reserves of gravel material, estimation of conformity as dam construction material from analysis of grain size distribution, the case study of oversea construction, and the material property comparison between rock fill material and gravel fill material, it is verified th possibility of using the gravel fill. Thereafter, the analysis of dam stability using a gravel fill material is accomplished. Finally, A gravel fill material can be used as the main construction material of CFRD, therefore the efficiency of resource recycling in the submerged area is maximized, and the established plan is more advantageous to stability, constructibility, environmentibility than the case of using a rock fill.

  • PDF

점토 충전물에 의한 암반사면 파괴사례 연구 (Case Study on Failure of Rock Slope Caused by Filling Material of Clay)

  • 김용준;이영휘;김선기;김주화
    • 터널과지하공간
    • /
    • 제16권5호
    • /
    • pp.368-376
    • /
    • 2006
  • 셰일층으로 구성된 암반사면에서 층리면을 따라 대규모 평면파괴가 사면 중앙부에서 발생하였다. 현장조사시 파괴사면 주변은 지하수 누수 흔적과 점토층의 충전물이 존재하였으며, 파괴원인을 검토한 결과 층리면을 따라 형성된 점토 충전물의 낮은 전단강도와 강우시 인장균열내 형성된 수압에 의해 붕괴가 발생한 것으로 나타났다. 그리고 충전된 절리면의 전단강도 특성을 규명하기 위해서 모래, 점토의 인위적인 충전물을 이용하여 충전재 두께비에 따른 전단강도 특성을 고찰하였다.

충전된 절리면의 전단특성에 관한 기초연구 (Basic Study on Shear Characteristics of Filled Rock Joint)

  • 김용준;이영휘;도성규
    • 터널과지하공간
    • /
    • 제14권5호
    • /
    • pp.318-326
    • /
    • 2004
  • 본 연구에서는 다양한 경계조건에서 충전물을 포함한 절리면의 역학적 특성을 규명할 수 있는 절리면 전단시험 장비를 개발하였다. 그리고 개발된 시험장비를 이용하여 돌출부 경사, 수직응력, 충전물 종류 및 두께변화에 따른 전단시험을 수행하고 충전된 절리면의 전단특성을 고찰하였다. 일정수직응력 조건에서 충전물 종류 및 두께, 돌출부 경사, 수직응력 등을 변화하여 실험을 수행한 바에 의하면 충전된 절리면의 거동과 강도특성은 절리면의 거칠기, 충전물 두께와 종류에 따라 영향을 받는 것으로 나타났으며, 충전물이 없는 절리면과 비교할 때 팽창각이 감소하여 거칠기 영향이 충전물에 의해 감소되는 것으로 나타났다. 그리고 한계두께비는 충전물 종류뿐만 아니라 응력수준, 거칠기에 따라서도 다른 것으로 나타났다.

The tunnel model tests of material development in different surrounding rock grades and the force laws in whole excavation-support processes

  • Jian Zhou;Zhi Ding;Jinkun Huang;Xinan Yang;Mingjie Ma
    • Geomechanics and Engineering
    • /
    • 제36권1호
    • /
    • pp.51-69
    • /
    • 2024
  • Currently, composite lining mountain tunnels in China are generally classified based on the [BQ] method for the surrounding rock grade. Increasingly, tunnel field construction is replicated indoors for scale down model tests. However, the development of analogous materials for model tests of composite lining tunnels with different surrounding rock grades is still unclear. In this study, typical Class III and V surrounding rock analogous materials and corresponding composite lining support materials were developed. The whole processes of excavation-support dynamics of the mountain tunnels were simulated. Data on the variation of deformations, contact pressures and strains on the surrounding rock were obtained. Finally, a comparative analysis between model tests and numerical simulations was performed to verify the rationality of analogous material development. The following useful conclusions were obtained by analyzing the data from the tests. The main analogous materials of Class III surrounding rock are barite powder, high-strength gypsum and quartz sand with fly ash, quartz sand, anhydrous ethanol and rosin for Class V surrounding rock. Analogous materials for rockbolts, steel arches are replaced by aluminum bar and iron bar respectively with both shotcrete and secondary lining corresponding to gypsum and water. In addition, load release rate of Class V surrounding rock should be less than Class III surrounding rock. The fenestration level had large influence on the load sharing ratio of the secondary lining, with a difference of more than 30%, while the influence of the support time was smaller. The Sharing ratios of secondary lining in Class III surrounding rock do not exceed 12%, while those of Class V surrounding rock exceed 40%. The overall difference between the results of model tests and numerical simulations is small, which verifies the feasibility of similar material development in this study.

Prediction models of the shear modulus of normal or frozen soil-rock mixtures

  • Zhou, Zhong;Yang, Hao;Xing, Kai;Gao, Wenyuan
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.783-791
    • /
    • 2018
  • In consideration of the mesoscopic structure of soil-rock mixtures in which the rock aggregates are wrapped by soil at normal temperatures, a two-layer embedded model of single-inclusion composite material was built to calculate the shear modulus of soil-rock mixtures. At a freezing temperature, an interface ice interlayer was placed between the soil and rock interface in the mesoscopic structure of the soil-rock mixtures. Considering that, a three-layer embedded model of double-inclusion composite materials and a multi-step multiphase micromechanics model were then built to calculate the shear modulus of the frozen soil-rock mixtures. Given the effect of pore structure of soil-rock mixtures at normal temperatures, its shear modulus was also calculated by using of the three-layer embedded model. Experimental comparison showed that compared with the two-layer embedded model, the effect predicted by the three-layer embedded model of the soil-rock mixtures was better. The shear modulus of the soil-rock mixtures gradually increased with the increase in rock regardless of temperature, and the increment rate of the shear modulus increased rapidly particularly when the rock content ranged from 50% to 70%. The shear modulus of the frozen soil-rock mixtures was nearly 3.7 times higher than that of the soil-rock mixtures at a normal temperature.

퇴적암의 층리면을 따라 형성된 충전물에 의한 암반사면 붕괴사례 (Case Study on Failure of Rock Slope Caused by Filling Material Formed along the Bedding Plane of Sedimentary Rock)

  • 김용준;이영휘;이종성;김우준
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.256-267
    • /
    • 2006
  • After heavy rainfall, It was occurred massive plane failure along bedding plane of shale in the center of rock slope. It was observed filling material and trace of underground water leakage around of the slope. We tried to find the cause for slope failure, and the result of examination showed that primary factors of the failure were low shear strength of clay filling material and water pressure farmed within tension crack existed in the top of the slope. In this research, in order to examine the features of shear strength of filled rock joint, shear test of filled rock joint was conducted using of artificial filling material such as sand and clay. Also we made an investigation into the characteristics of shear strength with different thickness of filling materials.

  • PDF

록볼트의 타설 직후의 강도발현 과정 및 효과에 관한 연구 (Study on rock reinforcement process and the effect of produced strength right after rockbolt installation)

  • 이토 준;박해균;김동완;김재권
    • 한국터널지하공간학회 논문집
    • /
    • 제5권2호
    • /
    • pp.189-198
    • /
    • 2003
  • 터널의 대단면화에 따라 각 암반 지보의 역할과 그 보강효과를 확인하고 보다 합리적인 지보구조로의 변화가 요구되고 있다. 특히, 굴착직후 숏크리트에 의한 지보효과가 효과적이지 못한 터널에서는 지보 매커니즘에 대한 추가적인 검토가 필요하다. 강도가 발생하지 않는 터널이 가장 불안한 상태에 있을 때의 지보구조는 충분한 검토가 필요하다. 본 논문에서는 약재령 (若材令)시 록볼트에 의한 보강효과를 볼트 그라우트재의 경화를 고려하여 모의암반에 의한 실험 및 수치해석을 실시하여 시간의존에 따른 그라우트재의 압축강도와 재령, 부착강도와 재령, 부착강성과 재령과의 관계를 명확하게 하는 것으로 굴착직후의 록볼트의 암반보강 효과를 검토하고, 약재령시 록볼트의 모델화 및 물리정수를 산정하였다. 또 그라우트재의 효과를 가지지 않고도 해결되는 수압팽창형 프리쿠션볼트에 의한 굴착직후의 암반보강효과에 대해서도 검토하였다.

  • PDF

암비탈면 녹화용 환경친화적 PEC4 공법의 시공 (In Case of Treatment of PEC4 Hydroseeding Measures for Revegetation of Rock Cut-Slopes)

  • 김경훈;김학영;황애민;이승은
    • 한국환경복원기술학회지
    • /
    • 제2권4호
    • /
    • pp.64-73
    • /
    • 1999
  • This study was conducted to find out the effects of hydroseeding material and seed mixture on the revegetation of rock cut-slopes by PEC4 (Polymer-Ecology-Control) Hydroseeding Measures. PEC4 hydroseeding material was applied to four cut-slopes using hydroseeding measures from April to August, 1999, and the field survey was carried out by monthly. PEC4 material consisted of bark compost and organic soil amendments. This material has high content of organic matter and high level of water holding capacity. PEC4 hydroseeding material shows low level of soil hardness, so it gives to good condition for seed germinating and plant growing in early stage. PEC4 material attached at rock cut-slopes by two types of adhesive agent was not eroded by rainfall. The plant coverage and number of plant species were affected by mixing ratio of seeds and seeding timing. From the viewpoint of plant establishment, the optimal hydroseeding timing of mixed seeds for plant growth seems to be in May. Most of the plant seeds were germinated well and they covered rock cut-slopes so quickly and effectively. Plant importance value of Silene armeria and Platycodon grandiflorum. were higher than any other seeded-native species in the competition between native species and exotic species, so they have enough possibility to be used for slope revegetation works. Thus it leads to conclusion that the revegetation method used in this experiment was a very effective method for plant establishment on rock cut-slopes.

  • PDF