• Title/Summary/Keyword: rock mass quality

Search Result 74, Processing Time 0.022 seconds

A new formulation for calculation of longitudinal displacement profile (LDP) on the basis of rock mass quality

  • Rooh, Ali;Nejati, Hamid Reza;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.539-545
    • /
    • 2018
  • Longitudinal Displacement Profile (LDP) is an appropriate tool for determination of the displacement magnitude of the tunnel walls as a function of the distance to the tunnel face. Some useful formulations for calculation of LDP have been developed based on the monitoring data on site or by 3D numerical simulations. However, the presented equations are only based on the tunnel dimensions and for different quality of rock masses proposed a unique LDP. In the present study, it is tried to present a new formulation, for calculation of LDP, on the basis of Rock mass quality. For this purpose, a comprehensive numerical simulation program was developed to investigate the effect of rock mass quality on the LDP. Results of the numerical modelling were analyzed and the least square technique was used for fitting an appropriate curve on the derived data from the numerical simulations. The proposed formulation in the present study, is a logistic function and the constants of the logistic function were predicted by rock mass quality index (GSI). Results of this study revealed that, the LDP curves of the tunnel surrounded by rock masses with high quality (GSI>60) match together; because the rock mass deformation varies over an elastic range.

Bearing capacity of shallow foundations on the bilayer rock

  • Alencar, Ana S.;Galindo, Ruben A.;Melentijevic, Svetlana
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2020
  • The traditional formulations for estimation of bearing capacity in rock mechanics assume a homogeneous and isotropic rock mass. However, it is common that the rock mass consists of different layers of different rock properties or of the same rock matrix with distinct geotechnical quality levels. The bearing capacity of a heterogeneous rock is estimated traditionally through the weighted average. In this paper, the solution of the weighted average is compared to the finite difference method applied to a bilayer rock mass. The influence of different parameters such as the thickness of the layers, the rock type, the uniaxial compressive strength and the overall geotechnical quality of the rock mass on the bearing capacity of a bilayer rock mass is analyzed. A parametric study by finite difference method is carried out to develop a bearing capacity factor in function of the layer thickness and the rock mass quality expressed in terms of the geological strength index, which is presented in a form of a chart. Therefore, this correlation factor allows estimating the bearing capacity of a rock mass that is formed by two layers with distinct GSI, depending on the bearing capacity of the rock mass formed only by the upper layer and considered by that way as homogenous and isotropic rock mass.

Blastability Quality System (BQS) for using it, in bedrock excavation

  • Christaras, B.;Chatziangelou, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.5
    • /
    • pp.823-845
    • /
    • 2014
  • Success in the excavation of foundations is commonly known as being very important in asserting stability. Furthermore, when the subjected formation is rocky and the use of explores is required, the demands of successful blasting are multiplied. The quick and correct estimation of excavation's characteristics may help the design of building structures, increasing their safety. The present paper proposes a new classification system which connects blastability and rock mass quality. This new system primarily concerns poor and friable rock mass, heavily broken with mixture of angular and rounded rock pieces. However, it should concern medium and good quality rock mass. The Blastability Quality System (BQS) can be an easy and widely - used tool as it is a quick calculator for blastability index (BI) and rock mass quality. Taking into account the research calculations and the parameters of BQS, what has been at question in this paper is the effect of BI magnitude on a geological structure.

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.

Numerical Analysis of the Visco-plastic Behavior of Rock Mass Considering Continuum Joints and Rock Bolt Elements (연속체 절리와 록볼트 요소를 고려한 암반의 점소성 거동에 관한 수치해석)

  • 노승환;이정인;이연규
    • Tunnel and Underground Space
    • /
    • v.14 no.3
    • /
    • pp.215-228
    • /
    • 2004
  • Rock mass contains discontinuities such as faults and joints, and their mechanical properties and spatial distribution dominate the stability of rock mass. Because the deformation of rock mass occurs discontinuities in many cases. However in the case of poor quality rock mass under high stresses, the deformation along intact rock can also influence the structure's stability. In this study, two dimensional finite element program was developed with a rheological model to analyze the stability of the structure excavated in jointed rock mass. The “equivalent material” approach was used assuming intact rock, joints and rock bolts as visco-plastic materials. The program was verified by analysing an intact rock model, a jointed rock mass model and a reinforced jointed rock mass model. The displacement was examined in each model with changing the intact rock behaviour as elastic and visco-plastic. In the case of poor quality rock mass under high stresses, e assumption of visco-plastic behaviour of intact rock resulted in larger displacement than when assuming elastic behaviour for intact rock. Therefore it is recommended to add intact rock's visco-plastic behaviour to the existing model, which only assumes visco-plastic behaviour of joints and rock bolts.

A Study on Relationship Between RMR and Q System in Rock Mass Classification (암반분류에서 RMR과 Q System의 상관성 분석)

  • 안종필;박주원;박상도
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.737-744
    • /
    • 2000
  • This paper resorts to rock mass rating and rock mass quality to draw value based on the evaluation of rock and to draw interrelation formula in relation to rock mass quality, A comparative analysis was given of survey values reported in the existing documents. This paper has tried to find out the relationship between RMR and Q System for the sake of choosing rational reinforcing patterns and of the safety of tunnels. The results run as follow: RMR=8.251n(Q)+43.83. This paper has also tried to find out the relationship between RMR and Q System by using Fuzzy Approximate Reasoning Concept. We suggest that those in charge should not depend on a single system only after evaluating the classification of rocks, and compare one result with another for the good of keeping track of the condition of base rocks in a better way.

  • PDF

Characteristics of crater formation due to explosives blasting in rock mass

  • Jeon, Seokwon;Kim, Tae-Hyun;You, Kwang-Ho
    • Geomechanics and Engineering
    • /
    • v.9 no.3
    • /
    • pp.329-344
    • /
    • 2015
  • Cratering tests in rock are generally carried out to identify its fragmentation characteristics. The test results can be used to estimate the minimum amount of explosives required for the target volume of rock fragmentation. However, it is not easy to perform this type of test due to its high cost and difficulty in securing the test site with the same ground conditions as the site where blasting is to be performed. Consequently, this study investigates the characteristics of rock fragmentation by using the hydrocode in the platform of AUTODYN. The effectiveness of the numerical models adopted are validated against several cratering test results available in the literature, and the effects of rock mass classification and ground formation on crater size are examined. The numerical analysis shows that the dimension of a crater is increased with a decrease in rock quality, and the formation of a crater is highly dependent on a rock of lowest quality in the case of mixed ground. It is expected that the results of the present study can also be applied to the estimation of the level and extent of the damage induced by blasting in concrete structures.

The effect of in-situ stress parameters and metamorphism on the geomechanical and mineralogical behavior of tunnel rocks

  • Kadir Karaman
    • Geomechanics and Engineering
    • /
    • v.37 no.3
    • /
    • pp.213-222
    • /
    • 2024
  • Determination of jointed rock mass properties plays a significant role in the design and construction of underground structures such as tunneling and mining. Rock mass classification systems such as Rock Mass Rating (RMR), Rock Mass Index (RMi), Rock Mass Quality (Q), and deformation modulus (Em) are determined from the jointed rock masses. However, parameters of jointed rock masses can be affected by the tunnel depth below the surface due to the effect of the in situ stresses. In addition, the geomechanical properties of rocks change due to the effect of metamorphism. Therefore, the main objective of this study is to apply correlation analysis to investigate the relationships between rock mass properties and some parameters related to the depth of the tunnel studied. For this purpose, the field work consisted of determining rock mass parameters in a tunnel alignment (~7.1 km) at varying depths from 21 m to 431 m below ground surface. At the same excavation depths, thirty-seven rock types were also sampled and tested in the laboratory. Correlations were made between vertical stress and depth, horizontal/vertical stress ratio (k) and depth, k and Em, k and RMi, k and point load index (PLI), k and Brazilian tensile strength (BTS), Em and uniaxial compressive strength (UCS), UCS and PLI, UCS and BTS. Relationships were significant (significance level=0.000) at the confidence interval of 95% (r = 0.77-0.88) between the data pairs for the rocks taken from depths greater than 166 m where the ratio of horizontal to vertical stress is between 0.6 and 1.2. The in-situ stress parameters affected rock mass properties as well as metamorphism which affected the geomechanical properties of rock materials by affecting the behavior of minerals and textures within rocks. This study revealed that in-situ stress parameters and metamorphism should be reviewed when tunnel studies are carried out.

An analysis of rock mass characteristics which influence the choice of support

  • Bednarek, Lukasz;Majcherczyk, Tadeusz
    • Geomechanics and Engineering
    • /
    • v.21 no.4
    • /
    • pp.371-377
    • /
    • 2020
  • There are currently three common methods for selecting excavation supports in Polish hard coal mines. While many factors are considered when choosing appropriate support, these do not include layering or cracking in the excavation ceiling. Although global classifications of rock mass are rarely used in hard coal mines, they are utilised much more frequently during the construction of underground structures such as tunnels. Mining classifications of rock mass have been developed (e.g., in Germany) and they rely on a number of factors but are often related to local mining and geological conditions. This paper discusses the selected findings of a study carried out on seven excavation sites with diverse mining and geological characteristics. Based on the collected data, two indicators were developed to describe rock mass quality. The first indicator is referred to as the roof lithology index WL and describes the quality of the excavation roof in terms of its layering and lithology. The second indicator is the crack intensity factor n and represents the amount of cracks in an excavation's roof. The correctness of the developed indicators was supported by reliable data from the excavation in which the designed support did not fulfill its task but was changed at a later stage, after calculating the proposed indicators.

Rock Mass Classification and Its Use in Blast Design for Tunneling (암분류기법과 터널굴착을 위한 발파설계에의 활용)

  • Ryu Chang-Ha;SunWoo Choon;Choi Byung-Hee
    • Explosives and Blasting
    • /
    • v.24 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • Building tunnels means dealing with what rock is encountered. Relocation of the site of the underground structure is rarely possible. Tunneling engineers and miners have to cope with the quality of the rock mass as it is. Different tunneling philosophies and different rock classification methods have been developed in various countries. Most of the rock classification methods are based on the response of the rock mass to the excavation. Tunnel support requirements could be assessed analytically, supplemented by rock mass classification predictions, and verified by measurements during construction. Rock mass classifications on their own should only be used for preliminary, planning purposes and not for final tunnel support. Design of blast pattern in tunneling projects in Korea is also mostly prepared according to the general rock classification methods such as RMR or Q. They, however, do not take into account the blast performance, and as a consequence, produce poor blasting results. In this paper, the methods of general rock classification and blast design for tunnel excavation in Korea are reviewed, and efforts to develop a new classification method, reflecting the blasting performance, are presented.