• Title/Summary/Keyword: rock joint survey

Search Result 62, Processing Time 0.016 seconds

Calculation of Joint Center Volume (JCV) for Estimation of Joint Size Distribution in Non-Planar Window Survey (비평면 조사창에서의 암반절리 크기분포 추정을 위한 Joint Center Volume (JCV) 산정 기법 제안)

  • Lee, Yong-Ki;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.2
    • /
    • pp.89-107
    • /
    • 2019
  • Rock joints have an extremely important role in analyzing the mechanical stability and hydraulic characteristics of rock mass structures. Most rock joint parameters are generally indicated as a distribution by statistical techniques. In this research, calculation technique of Joint Center Volume (JCV) is analyzed, which is required for estimating the size distribution having the largest uncertainty among the joint parameters, then a new technique is proposed which is applicable regardless of the shape of survey window. The existing theoretical JCV calculation technique can be applied only to the plane window, and the complete enumeration techniques show the limitations in joint trace type and analysis time. This research aims to overcome the limitations in survey window shape and joint trace type through calculating JCV by using Monte Carlo simulation. The applicability of proposed technique is validated through the estimation results at non-planar survey windows such as curved surface and tunnel surface.

Rock Joint Survey System by image Processing and Stereophotogrammetry (화상처리 및 입체사진측량학을 이용한 암반 절리 조사 시스템)

  • 류동우;이유리;장윤섭;이희근;박형동
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.77-91
    • /
    • 2000
  • Rock joint survey consists of measurement of orientation and face mapping for trace informations. We have developed a new alternative approach called rock joint survey system by stereophotogrammetry and image processing to replace the conventional manual method. For the measurement of orientations and face mapping, we applied a stereophotogrammetry and developed two hybrid approaches using image processing techniques, respectively. These methods have advantages in making it possible to measure the orientations of joints and perform face mapping rapidly and objectively in unaccessible and dangerous areas.

  • PDF

Rock Joint Survey System by image Processing and Stereophotogrammetry (화상처리 및 입체사진측량학을 이용한 암반 절리 조사 시스템)

  • 류동우;이유리;장윤섭;이희근;박형동
    • Tunnel and Underground Space
    • /
    • v.10 no.3
    • /
    • pp.329-343
    • /
    • 2000
  • Rock joint survey consists of measurement of orientation and face mapping for trace informations. We have developed a new alternative approach called rock joint survey system by stereophotogrammetry and image processing to replace the conventional manual method. For the measurement of orientations and face mapping, we applied a stereophotogrammetry and developed two hybrid approaches using image processing techniques, respectively. These methods have advantages in making it possible to measure the orientations of joints and perform face mapping rapidly and objectively in unaccessible and dangerous areas.

  • PDF

A Study for the Estimation of Joint Diameter Distribution Using the Trace Length Distribution from Cylindrical Window Survey (원통형조사창에서의 절리선 길이분포를 이용한 암반 내 절리직경분포 추정에 관한 연구)

  • Jeon, Ki-Hwan;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.386-393
    • /
    • 2011
  • This study suggests an algorithm for estimating joint diameter distribution in rock mass from the joint trace length distribution around a circular tunnel. For estimating the joint diameter distribution, the concept of Joint Center Volume (JCV) suggested by Song. (2005) was applied and the calculation method of JCV for the cylindrical window survey was developed by using the complete survey method. The estimated joint diameter distribution was verified against the original joint diameter distribution by Monte-Carlo simulation. It was observed that the estimated joint diameter distribution was converged to the original joint diameter distribution with less than 20% of error.

A Study on Rock Mass Classification in Quartzite Rock Bed with Consideration of Joint Frequency (절리빈도를 고려한 규암 암반에서의 합리적인 암판정 연구)

  • Lee, Su-Gon;Kim, Min-Sung;Lee, Kyung-Soo;Lee, Chi-Hong
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.102-108
    • /
    • 2007
  • Generally, the method used most widely for rock mass classification is considering the rock strength and development of joint frequency. However, if rock bed has micro-crack and long joint, this method is not rational. Therefore, the difficulties of excavation in the rock bed with complicated geological condition are decided by combining joint frequency. indoor tests (uniaxiall compressive strength, point load test, indoor elastic wave velocity, etc.) and field seismic refraction survey, and the rock mass classification should be implemented by considering their interrelationship.

Development of Joint Survey System using Photogrammetric Technique (사진측량기법에 의한 절리조사 시스템 개발)

  • Son, Youngjin;Kim, Jaedong;Jeong, Wansoon;Kim, Jong-Hoon;Kim, Ki-Seog
    • Tunnel and Underground Space
    • /
    • v.24 no.1
    • /
    • pp.55-66
    • /
    • 2014
  • In this study, a joint survey system was developed to efficiently analyze geometrical characteristics of joint structures in rock mass using photogrammetric technique. The system includes both hardware and software. The hardware consists of a high resolution image camera for photographing image of a surface of rock body, a direction controlling system for adjusting the attitude of camera, and a digital compass for measuring the rotation angle of camera. The software was also developed in order to analyze the orientation, density, mean length of joints revealed on the images of rock surfaces. The software developed in this study was named as JointeXtractor. As applying this system into several field measurements, the orientation, density, mean length of joints could be quantitatively measured through analyzing the images of rock surfaces, in which the case of a difficult-to-access area was especially included for the test of the system.

A Study of Statistical Analysis of Rock Joint Size and Intensity by Stereological Approach (입체해석학적 접근법에 의한 암반 절리 크기 및 밀집도의 통계적 분석에 관한 연구)

  • 류동우;김영민;이희근
    • Tunnel and Underground Space
    • /
    • v.12 no.1
    • /
    • pp.10-18
    • /
    • 2002
  • Rock joint system makes a heavy effect on the behavior of rock structures. The definition of a 3D rock joint system is very important in 2D or 3D numerical analysis for the prediction of the behavior of a discontinuous rock mass. To enhance the reality of a 3D definition of rock joint system, it is essential to estimate the unbiased statistics of basic geometric attributes of rock joints. In this study, we have proposed the statistical analysis and derived the related equations for an estimation of statistics of joint size and intensity. Geometry of rock joints in 3 dimensional space can be defined by the aggregate of location, size, orientation and intensity. The dimensional limit of survey method and its data makes 3D geometric attributes probabilistic. In the estimation of statistics of joint size, we have discussed the technique to correct the bias from a dimensional limit and derived the equation of 3D joint intensity by stereological approaches.

Effect of Photographing Light Intensity on Rock Joint Survey in Mine Tunnels using Stereophotogrammetry (입체사진측량기법을 이용한 광산 갱도 내 불연속면 조사에 대한 조도의 영향에 관한 연구)

  • Han, Jeong-Hun;Song, Jae-Joon;Jo, Young-Do
    • Tunnel and Underground Space
    • /
    • v.19 no.6
    • /
    • pp.517-525
    • /
    • 2009
  • Stereophotogrammetry is used to extract spatial information of an interested object by constructing a stereo-image from two or more photos. In this study, the stereophotogrammetry was adopted for a rock joint survey in mine tunnels. The orientations of discontinuities were measured from two mine tunnels with a clinocompass. To evaluate the effect of photographing light level on the stereophotogrammetry analysis, the light intensity was changed within a predefined range for every photograph. Those photographs were analyzed by using a commercial code for stereophotogrammetry - ShapeMetriX 3D, and the results from the analysis were compared with the manual measurement using a clinocompass.

Measurement Equipment Development of Stability Evaluation for Joint Slope using Unmaned Aerial Vehicle (무인항공기를 이용한 절리사면의 안정성평가 계측장비 개발)

  • Lee, Hyun Chol;Kwon, Ki Mun;Moon, Chang Eun;Jo, Yeong Hun
    • Tunnel and Underground Space
    • /
    • v.28 no.3
    • /
    • pp.193-208
    • /
    • 2018
  • In order to interpret rock slope safely and effectively, the mechanical properties of the rock must be carefully investigated. However, due to the limitations of clinometer usage, a new measure of measurement is required to complement these limitations. In this study, a measuring device was developed to analyze the characteristics of joint orientation, and to apply the orientation of joint to the field. The developed measuring equipment is divided into analysis software and hardware. The hardware was composed of a measuring module that measures the joint orientation of rock and a transport module that transmits the measurement data. The software was developed to analyze the orientation of the joint from the data obtained from the measuring module and is named Drone Joint Orientation Survey Measurement. The developed measuring equipment was well field capable if it could not be measured by the inspector, such as in areas where access was difficult, and was capable of effectively analyzing the lab test results for the orientation of the joint.

The Effect of the Discontinuity Spacing/Length Ratio on Step-Path Failure of Jointed Rock Slopes (절리 암반 사면의 계단 경로 파괴에 미치는 불연속면 간격/길이 비의 영향)

  • Woon Sang Yoon
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.317-327
    • /
    • 2024
  • When a non-persistent joint system is formed in a large-scale rock slope, slope failure may occur due to presence of a the stepped sliding surface. Such a surface can be divided into joint-to-joint sliding surfaces or joint-to-rock bridge sliding surfaces. In the latter case, the rock bridge provides shear resistance parallel to the joint and tensile resistance perpendicular to the joint. The load of the sliding rock can lead to failure of the rock bridge, thereby connecting the two joints at each ends of the bridge and resulting in step-path failure of the slope. If each rock bridge on a slope has the same length, the tensile strength is lower than the shear strength, resulting in the rock bridges oriented perpendicular to the joint being more prone to failure. In addition, the smaller the ratio of discontinuity spacing to length, the greater the likelihood of step-path failure. To assess the risk of stepped sliding on a rock slope with non-persistent joints, stability analysis can be performed using limit equilibrium analysis or numerical analysis. This involves constructing a step-path failure surface through a systematic discontinuity survey and analysis.