• Title/Summary/Keyword: rock impedance

Search Result 21, Processing Time 0.021 seconds

Televiewer Rock Strength as an Approach to Estimate the Strength of in situ Rocks (텔레뷰어 암석강도 산출 및 그의 응용성)

  • 김중열;김유성;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.237-244
    • /
    • 2002
  • Televiewer is a logging tool capable of scanning the borehole wall. The tool uses a rotating acoustic beam generator that acts as both a transmitter and receiver. The beams are sent toward the wall. The amplitude of a returning signal from the wall has nearly a linear relationship with the reflection coefficient R of the borehole wall, when the wall is smooth. As R depends only on rock impedance for fixed water impedance, the amplitude is directly associated with mass density and seismic velocity of rock. Meanwhile, the amplitude can be further reduced by wall roughness that may be caused by drilling procedures, differences in rock hardness, because the rough surface can easily scatter the acoustic energy and sometimes the hole becomes elongated in all directions according to the degree of weathering. In this sense, the amplitude is related to the hardness of rocks. For convenience of analysis, the measured amplitude image(2-D data(azimuth ${\times}$ depth)) is converted, with an appropriate algorithm, to the 1-D data(depth), where the amplitude image values along a predetermined fracture signature(sinusoid) are summed up and averaged. The resulting values are subsequently scaled simply by a scalar factor that is possibly consistent with a known strength. This scaled Televiewer reflectivity is named, as a matter of convenience,“Televiewer rock strength”. This paper shows, based on abundant representative case studies from about 8 years of Televiewer surveys, that Televiewer rock strength might be regarded, on a continuous basis with depth, as a quitely robust indicator of rock classification and in most cases as an approximate uniaxial strength that is comparable to the rebound value from Schmidt hammer test.

  • PDF

Analysis of the Time Domain Reflectometry for the Monitoring of Rock Displacement (시간 영역 반사법에 의한 암반 변위의 계측 기술 분석)

  • 정소걸
    • Tunnel and Underground Space
    • /
    • v.5 no.1
    • /
    • pp.70-76
    • /
    • 1995
  • Two types of deformations can occur on the cable during the monitoring of the rock displacement by the time domain reflectometry. One is the impedance model for tensile deformation, and the other is the capacitance model for the shear deformation. The former gives a response signal with a gradual change in the amplitude of the reflected voltage, meanwhile the latter produces a signal with a blunted spike. The resolution of the TDR can be improved to 0.125% using calibration crimps on the cable of 60 meters long. It is recommended that the diameter of the cable should be 18 mm at least in order to induce a better reflected pulse without any open-circuit. The actual TDR technique cannot characterize the type and the magnitude of rock displacement quantitatively. Systematic investigation of the TDR parameters, such as the exact of cable diameter, cable length, number of crimps, combination of shearing and extension, and environment of the TDR equipment, will be able to improve the resolution to 0.01 mm.

  • PDF

MAGNETIC RESONANCE ELECTRICAL IMPEDANCE TOMOGRAPHY

  • Kwon, Oh-In;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.519-541
    • /
    • 2001
  • Magnetic Resonance Electrical Impedance Tomography(MREIT) is a new medical imaging technique for the cross-sectional conductivity distribution of a human body using both EIT(Electrical Impedance Tomography) and MRI(Magnetic Resonance Imaging) system. MREIT system was designed to enhance EIT imaging system which has inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. MREIT utilizes a recent CDI (Current Density Imaging) technique of measuring the internal current density by means of MRI technique. In this paper, a mathematical modeling for MREIT and image reconstruction method called the alternating J-substitution algorithm are presented. Computer simulations show that the alternating J-substitution algorithm provides accurate high-resolution conductivity images.

  • PDF

Rock physics modeling in sand reservoir through well log analysis, Krishna-Godavari basin, India

  • Singha, Dip Kumar;Chatterjee, Rima
    • Geomechanics and Engineering
    • /
    • v.13 no.1
    • /
    • pp.99-117
    • /
    • 2017
  • Rock physics modeling of sandstone reservoir from gas fields of Krishna-Godavari basin represents the link between reservoir parameters and seismic properties. The rock physics diagnostic models such as contact cement, constant cement and friable sand are chosen to characterize reservoir sands of two wells in this basin. Cementation is affected by the grain sorting and cement coating on the surface of the grain. The models show that the reservoir sands in two wells under examination have varying cementation from 2 to more than 6%. Distinct and separate velocity-porosity and elastic moduli-porosity trends are observed for reservoir zones of two wells. A methodology is adopted for generation of Rock Physics Template (RPT) based on fluid replacement modeling for Raghavapuram Shale and Gollapalli Sandstones of Early Cretaceous. The ratio of P-wave velocity to S-wave velocity (Vp/Vs) and P-impedance template, generated for this above formations is able to detect shale, brine sand and gas sand with varying water saturation and porosity from wells in the Endamuru and Suryaraopeta gas fields having same shallow marine depositional characters. This RPT predicted detection of water and gas sands are matched well with conventional neutron-density cross plot analysis.

Measurement of Blood Flow Variation using Impedance Method (임피던스법을 이용한 혈류량 변화 측정)

  • Jeong Do-Un;Kang Seong-Chul;Jeon Gye-Rock
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.693-696
    • /
    • 2006
  • In this study, we made the system to measure variation of blood flow using bio-electrical impedance analysis method. The system, which could measure variation of impedance according to pressure change by artificial pressure, consists of pressure measurement and impedance measurement by 4-electrode method. Pressure measurement splits into semiconducting pressure sensor and electronic circuit for processing output signal. In addition, impedance measurement splits into constant current source circuit and lock-in amplifier for detection impedance signal. We experimented feature of impedance measurement using standard resistance to evaluate the system characteristic. As well as, we experimented to estimate variation of blood flow by measuring impedance and blood flow resistance ratio using mean arterial pressure and variation of blood flow with experimental group. As result of this study, blood flow resistance ratio and variation of blood flow were definitely in inverse proportion and were -0.96776 as correlation coefficient by correlation analysis.

  • PDF

ELECTRICAL IMPEDANCE IMAGING FOR SEARCHING ANOMALIES

  • Ohin Kwon;Seo, Jin-Keun;Woo, Eung-Je;Yoon, Jeong-Rock
    • Communications of the Korean Mathematical Society
    • /
    • v.16 no.3
    • /
    • pp.459-485
    • /
    • 2001
  • The aim of EIT (electrical impedance tomography) system is to image cross-section conductivity distribution of a human body by means of both generating and sensing electrodes attached on to the surface of the body, where currents are injected and voltages are measured. EIT has been suffered from the severe ill-posedness which is caused by the inherent low sensitivity of boundary measurements to any changes of internal tissue conductivity values. With a limited set of current-to-voltage data, figuring out full structure of the conductivity distribution could be extremely difficult at present time, so it could be worthwhile to extract some necessary partial information of the internal conductivity. We try to extract some key patterns of current-to-voltage data that furnish some core information on the conductivity distribution such s location and size. This overview provides our recent observation on the location search and the size estimation.

  • PDF

Computational Soil-Structure Interaction Design via Inverse Problem Formulation for Cone Models

  • Takewaki, Izuru;Fujimoto, Hiroshi;Uetani, Koji
    • Computational Structural Engineering : An International Journal
    • /
    • v.2 no.1
    • /
    • pp.33-42
    • /
    • 2002
  • A computationally efficient stiffness design method for building structures is proposed in which dynamic soil-structure interaction based on the wave-propagation theory is taken into account. A sway-rocking shear building model with appropriate ground impedances derived from the cone models due to Meek and Wolf (1994) is used as a simplified design model. Two representative models, i.e. a structure on a homogeneous half-space ground and a structure on a soil layer on rigid rock, are considered. Super-structure stiffness satisfying a desired stiffness performance condition are determined via an inverse problem formulation for a prescribed ground-surface response spectrum. It is shown through a simple yet reasonably accurate model that the ground conditions, e.g. homogeneous half-space or soil layer on rigid rock (frequency-dependence of impedance functions), ground properties (shear wave velocity), depth of surface ground, have extensive influence on the super-structure design.

  • PDF

Estimation of the continuity of inclined pits by tunnel channel wave investigation (터널 채널파를 이용한 사갱 연장성 규명)

  • 김중열;방기문;정현기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.229-236
    • /
    • 2002
  • In this paper, a new novel technique of seismic survey is introduced to estimate the continuity of inclined pits filled with water, It was assumed that the pits would be connected to an abandoned railway tunnel that might be constructed in the past. Thus, detection of pit end was needed for the design of a new highway tunnel(Yukshimreong tunnel) that was likely to be met with a pit. In the beginning of exploration, no reliable, cost effective method was available. Hence, focus of interest moved toward the high impedance contrast(reflection coefficient k∼0.8) between water and rock. In this special model of sequence rock-water-rock, total reflection occurs and the seismic energy, when it is generated in the pit water, is nearly confined to the pit so that seismic waves can propagate much further within the pit. As a matter of convenience, this is called“tunnel channel wave”. With these considerations in mind, seismic detonator(2g) was used as a source at the entrance of pit, whereas hydrophone chain(hydrophone interval=1m) was placed on the bottom of pit. With this appropriate source-receiver arrangement, desirable down-going and up-going waves could be observed that will help conform the continuity of pits. After about one year, it was ascertained that the inclined pit of interest was just nearby crossed with the newly excavated tunnel, as it was predicted.

  • PDF

Mapping the water table at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network using multiple geophysical methods

  • Ju, Hyeon-Tae;Sa, Jin-Hyeon;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.27 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • The most effective way to distinguish subsurface interfaces that produce various geophysical responses is through the integration of multiple geophysical methods, with each method detecting both a complementary and unique set of distinct physical properties relating to the subsurface. In this study, shallow seismic reflection (SSR) and ground penetrating radar (GPR) surveys were conducted at the Cheongju-Gadeok site of the Korea National Groundwater Monitoring Network to map the water table, which was measured at 12 m depth during the geophysical surveys. The water table proved to be a good target reflector in both datasets, as the abrupt transition from the overlying unsaturated weathered rock to the underlying saturated weathered rock yielded large acoustic impedance and dielectric constant contrasts. The two datasets were depth converted and integrated into a single section, with the SSR and GPR surveys conducted to ensure subsurface imaging at approximately the same wavelength. The GPR data provided detailed information on the upper ~15 m of the section, whereas the SSR data imaged structures at depths of 10-45 m. The integrated section thus captured the full depth coverage of the sandy clay, water table, weathered rock, soft rock, and hard rock structures, which correlated well with local drillcore and water table observations. Incorporation of these two geophysical datasets yielded a synthetic section that resembled a simplified aquifer model, with the best-fitting seismic velocity, dielectric constant, and porosity of the saturated weathered layer being $v_{seismic}=1000m/s$, ${\varepsilon}_r=16$, and ${\phi}=0.32$, respectively.

A Study on Electrode Array for Measurement of Induced Polarization of Rock Samples (암석 시료의 유도분극 측정을 위한 전극배열 비교)

  • Man-ho Han;Jung-hwan Lee;Keun-Soo Lee;Myeong-Jong Yi
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.483-494
    • /
    • 2023
  • Measurement of the physical properties of rocks or minerals is an important factor in determining the distribution of the underground medium as well as mineral resource investigations. Resistivity and induced polarization, which are widely used in Korea, are methods for measuring electrical properties, which are representative properties of obtaining subsurface information. In order to precisely analyze the exploration data obtained from various sites, it is important to accurately measure the material properties. Electrical properties of rock is measured using two-electrode or four-electrode method. Compared to the four-electrode method, the two-electrode method is generally used because it is very easy to contact the sample and the electrode, but there is a problem in that the impedance of the electrode and the sample is measured together. In this study, the time-domain the induced polarization effects were measured using the 2-electrode method and the 4-electrode method for artificial samples mixed with graphite and cement having induced polarization characteristics, and the results were compared. Although the 4-electrode method has difficulties in installing potential electrodes, it was confirmed that it is effective in measuring electrical properties because it can reduce the problem caused by the impedance of potential electrodes compared to the 2-electrode method.