• Title/Summary/Keyword: rock dating

Search Result 44, Processing Time 0.021 seconds

Origin of Clay Minerals of Core RS14-GC2 in the Continental Slope to the East of the Pennell-Iselin Bank in the Ross Sea, Antarctica (남극 로스해 펜넬-이젤린 퇴 동쪽 대륙사면의 코어 RS14-GC2의 점토광물의 기원지 연구)

  • Ha, Sangbeom;Khim, Boo-Keun;Cho, Hyen Goo;Colizza, Ester
    • Journal of the Mineralogical Society of Korea
    • /
    • v.31 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • A gravity core (RS14-C2) was collected at site RS14-C2 in the continental slope to the east of Pennell-Isellin Bank of the Ross Sea (Antarctica) during PNRA XXIX (Rosslope II Project) Expedition. In order to trace the sediment source, magnetic susceptibility (MS), sand fraction, and clay mineral compositions were analyzed, and AMS $^{14}C$ ages were dated. Core sediments consist mostly of hemipelagic sandy clay or silty clay including ice-rafted debris (IRD). AMS $^{14}C$ age of core-top indicates the modern and Holocene sediments. Based on AMS $^{14}C$ dating, sediment color, MS and sand fraction, core sediments are divided into interglacial and glacial intervals. The interglacial brown sediments are characterized by low MS and sand fraction, whereas the glacial gray sediments are characterized by high MS and sand fraction. Among clay mineral compositions of core sediments, illite is highest (61.8~76.7%), and chlorite (15.7~21.3%), kaolinite (3.6~15.4%), and smectite (0.9~5.1%) are in decreasing order, and these compositions are also divided into the interglacial and glacial/deglacial intervals. During the glacial period, the high content of illite and chlorite indicate sediment supply from the bedrocks of Transantarctic Mountains under the Ross Ice Sheet. In contrast, because of decreasing supply of illite and chlorite by the glacial retreat, smectite and kaolinite contents increased relatively during the interglacial period. During the interglacial period, smectite may be transported additionally by the northeastward flowing surface current from the coast of Victoria Land in the western Ross Sea. Kaolinite may be also supplied to the continental slope by the Antarctic Slope Current from the kaolin-rich metasedimentary rock outcropped on the Edward VII Peninsula.

The Characteristic of Mangerite and Gabbro in the Odaesan Area and its Meaning to the Triassic Tectonics of Korean Peninsula (오대산 지역에 나타나는 맨거라이트와 반려암의 특징과 트라이아스기 한반도 지체구조 해석에 대한 의미)

  • Kim, Tae-Sung;Oh, Chang-Whan;Kim, Jeong-Min
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.77-98
    • /
    • 2011
  • The igneous complex consisting of mangerite and gabbro in the Odaesan area, the eastem part of the Gyeonggi Massif, South Korea, intruded early Paleo-proterozoic migmatitic gneiss. The mangerite is composed of orthopyroxene, clinopyroxene, amphibole, biotite, plagioclase, pethitic K-feldspar, quartz. The gabbro has similar mineral assemblage but gabbro has minor amounts of amphibole and no perthitic K-feldspar. The gabbro occurs as enclave and irregular shaped body within the mangerite, and the boundary between the mangerite and gabbro is irregular. Leucocratic lenses with perthitic K-feldspar are included in the gabbro enclaves. These textures represent mixing of two different magmas in liquid state. SHRIMP U-Pb zircon age dating gave $234{\pm}1.2$ Ma and $231{\pm}1.3$ Ma for mangerite and gabbro, respectively. These ages are similar with the intrusion ages of post collision granitoids in the Hongseong (226~233 Ma) and Yangpyeong (227~231 Ma) areas in the Gyeonggi Massif. The mangerite and gabbro are high Ba-Sr granites, shoshonitic and formed in post collision tectonic setting. These rocks also show the characters of subduction-related igneous rock such as enrichment in LREE, LILE and negative Nb-Ta-P-Ti anomalies. These data represent that the mangerite and gabbro formed in the post collision tectonic setting by the partial melting of an enriched lithospheric mantle during subduction which occurred before collision. The heat for the partial melting was supplied by asthenospheric upwelling through the gab between continental and oceanic slabs formed by slab break-off after continental collision. The distribution of post-collisional igneous rocks (ca. 230 Ma) in the Gyeonggi Massif including Odaesan mangerite and gabbro strongly suggests that the tectonic boundary between the North and South China blocks in Korean peninsula passes the Hongseong area and futher exteneds into the area between the Yangpyeong-Odaesan line and Ogcheon metamorphic belt.

Revised Fission-track Ages and Chronostratigraphies of the Miocene Basin-fill Volcanics and Basements, SE Korea (한국 동남부 마이오세 분지 화산암과 기반암의 피션트랙 연대 재검토와 연대층서 고찰)

  • Shin, Seong-Cheon
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.83-115
    • /
    • 2013
  • Erroneous fission-track (FT) ages caused by an inappropriate calibration in the initial stage of FT dating were redefined by re-experiments and zeta calibration using duplicate samples. Revised FT zircon ages newly define the formation ages of Yucheon Group rhyolitic-dacitic tuffs as Late Cretaceous to Early Paleocene ($78{\pm}4$ Ma to $65{\pm}2$ Ma) and Gokgangdong rhyolitic tuff as Early Eocene ($52.1{\pm}2.3$ Ma). In case of the Early Miocene volcanics, FT zircon ages from a dacitic tuff of the upper Hyodongri Volcanics ($21.6{\pm}1.4$ Ma) and a dacitic lava of the uppermost Beomgokri Volcanics ($21.3{\pm}2.0$ Ma) define chronostratigraphies of the upper Beomgokri Group, respectively in the southern Eoil Basin and in the Waeup Basin. A FT zircon age ($19.8{\pm}1.6$ Ma) from the Geumori dacitic tuff defines the time of later dacitic eruption in the Janggi Basin. Based on FT zircon ages for dacitic rocks and previous age data (mostly K-Ar whole-rock, partly Ar-Ar) for basaltic-andesitic rocks, reference ages are recommended as guides for stratigraphic correlations of the Miocene volcanics and basements in SE Korea. The times of accumulation of basin-fill sediments are also deduced from ages of related volcanics. Recommended reference ages are well matched to the whole stratigraphic sequences despite complicated basin structures and a relative short time-span. The Beomgokri Group evidently predates the Janggi Group in the Eoil-Waeup basins, while it is placed at an overlapped time-level along with the earlier Janggi Group in the Janggi Basin. Therefore, the two groups cannot be uniformly defined in a sequential order. The Janggi Group of the Janggi Basin can be evidently subdivided by ca. 20 Ma-basis into two parts, i.e., the earlier (23-20 Ma) andesitic-dacitic and later (20-18 Ma) basaltic strata.

SHRIMP Zircon U-Pb Age and Geochemistry of Igneous Rocks in the Ssangyong and Yongchu Valleys and Mungyeong Saejae Geosites, Mungyeong Geopark (문경지질공원 쌍룡계곡, 용추계곡, 문경새재 지질명소 화성암류의 SHRIMP 저어콘 U-Pb 연령과 지구화학)

  • Wonseok Cheong;Yoonsup Kim;Giun Han;Taehwan Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.1
    • /
    • pp.73-94
    • /
    • 2023
  • We carried out the sensitive high resolution ion microprobe (SHRIMP) zircon U-Pb age dating and whole-rock geochemical analysis of granitoids and felsic porphyries in the Ssangyong Valley, Yongchu Valley, and Mungyeong Saejae geosites in the Mungyeong Geopark. The igneous rocks crop out in the western, northwestern and central parts of the Mungyeong city area, respectively, and intruded (meta)sedimentary successions of the Ogcheon Metamorphic Belt, Cambro-Ordovician Mungyeong Group and Jurrasic Daedong Group. The U-Pb isotopic compositions of zircon from two felsic porphyries and one granite samples in the Ssanyeong Valley yielded the Cretaceous intrusion ages of 93.9±3.3 Ma (tσ), 95.1±4.0 Ma (tσ) and 94.4±2.0 Ma (tσ), respectively. On the other hand, a felsic dike sample and a granite in the Yongchu Valley and a porphyritic granite in the Mungyeong Saejae had intrusion ages of 90.2±2.0 Ma (tσ), 91.0±3.0 Ma (tσ) and 88.6±1.5 Ma (tσ), respectively. Based on the average standard error calculated in combination with results of previous studies in this area (Lee et al., 2010; Yi et al., 2014; Aum et al., 2019), the geochronological results show that spatial variation in intrusion age of ~5 Myr between the Ssangyong (94.5±0.2 Ma) and Yongchu Valleys (89.7±0.4 Ma) is apparent. The geochemical compositions of major and trace elements in the samples showed an affinity of typical post-orogenic granite, indicating their petrogenesis during the late stage of Early Cretaceous magmatic activity possibly in association with subduction events of the Izanagi Plate.