• Title/Summary/Keyword: robustness weights

Search Result 56, Processing Time 0.023 seconds

Pruning for Robustness by Suppressing High Magnitude and Increasing Sparsity of Weights

  • Cho, Incheon;Ali, Muhammad Salman;Bae, Sung-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.7
    • /
    • pp.862-867
    • /
    • 2021
  • Although Deep Neural Networks (DNNs) have shown remarkable performance in various artificial intelligence fields, it is well known that DNNs are vulnerable to adversarial attacks. Since adversarial attacks are implemented by adding perturbations onto benign examples, increasing the sparsity of DNNs minimizes the propagation of errors to high-level layers. In this paper, unlike the traditional pruning scheme removing low magnitude weights, we eliminate high magnitude weights that are usually considered high absolute values, named 'reverse pruning' to ensure robustness. By conducting both theoretical and experimental analyses, we observe that reverse pruning ensures the robustness of DNNs. Experimental results show that our reverse pruning outperforms previous work with 29.01% in Top-1 accuracy on perturbed CIFAR-10. However, reverse pruning does not guarantee benign samples. To relax this problem, we further conducted experiments by adding a regularization term for the high magnitude weights. With adding the regularization term, we also applied conventional pruning to ensure the robustness of DNNs.

Robustness of Minimum Disparity Estimators in Linear Regression Models

  • Pak, Ro-Jin
    • Journal of the Korean Statistical Society
    • /
    • v.24 no.2
    • /
    • pp.349-360
    • /
    • 1995
  • This paper deals with the robustness properties of the minimum disparity estimation in linear regression models. The estimators defined as statistical quantities whcih minimize the blended weight Hellinger distance between a weighted kernel density estimator of the residuals and a smoothed model density of the residuals. It is shown that if the weights of the density estimator are appropriately chosen, the estimates of the regression parameters are robust.

  • PDF

Rotary Inverted Pendulum Control Using Single Neuron With Weights of PID Parameters (PID 계수를 가중치로 가진 단일뉴런을 이용한 Rotary Inverted Pendulum 제어)

  • 이정훈;정성부;엄기환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2569-2572
    • /
    • 2003
  • In this paper, we Proposed the inverted pendulum control method using single neuron neural network that have weights as PID parameters. The proposed method has three inputs(proportion, integration, differentiation term of the error), and uses weights as P, I, D parameters. In order to verify the effectiveness of the proposed method, we experimented on the rotary inverted pendulum with load effect disturbance. The results showed the effectiveness and robustness of the proposed pendulum controller.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Neural Network (신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyun;Kim, Hyung-Su;Park, June-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.121-126
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLC[8] for. three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[8].

  • PDF

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF

Robust Estimator of Location Parameter

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.11 no.1
    • /
    • pp.153-160
    • /
    • 2004
  • In recent years, the size of data set which we usually handle is enormous, so a lot of outliers could be included in data set. Therefore the robust procedures that automatically handle outliers become very importance issue. We consider the robust estimation problem of location parameter in the univariate case. In this paper, we propose a new method for defining robustness weights for the weighted mean based on the median distance of observations and compare its performance with several existing robust estimators by a simulation study. It turns out that the proposed method is very competitive.

Multi-layer Neural Network with Hybrid Learning Rules for Improved Robust Capability (Robustness를 형성시키기 위한 Hybrid 학습법칙을 갖는 다층구조 신경회로망)

  • 정동규;이수영
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.211-218
    • /
    • 1994
  • In this paper we develope a hybrid learning rule to improve the robustness of multi-layer Perceptions. In most neural networks the activation of a neuron is deternined by a nonlinear transformation of the weighted sum of inputs to the neurons. Investigating the behaviour of activations of hidden layer neurons a new learning algorithm is developed for improved robustness for multi-layer Perceptrons. Unlike other methods which reduce the network complexity by putting restrictions on synaptic weights our method based on error-backpropagation increases the complexity of the underlying proplem by imposing it saturation requirement on hidden layer neurons. We also found that the additional gradient-descent term for the requirement corresponds to the Hebbian rule and our algorithm incorporates the Hebbian learning rule into the error back-propagation rule. Computer simulation demonstrates fast learning convergence as well as improved robustness for classification and hetero-association of patterns.

  • PDF

Design of Adaptive Fuzzy Logic Controller for SVC using Tabu Search and Neural Network (Tabu 탐색법과 신경회로망을 이용한 SVC용 적응 퍼지제어기의 설계)

  • Son, Jong-Hun;Hwang, Gi-Hyeon;Kim, Hyeong-Su;Park, Jun-Ho;Park, Jong-Geun
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.4
    • /
    • pp.188-195
    • /
    • 2002
  • We proposed the design of SVC adaptive fuzzy logic controller(AFLC) using Tabu search and neural network. We tuned the gains of input-output variables of fuzzy logic controller(FLC) and weights of neural network using Tabu search. Neural network was used for adaptively tuning the output gain of FLC. The weights of neural network was learned from the back propagation algorithm in real-time. To evaluate the usefulness of AFLC, we applied the proposed method to single-machine infinite system. AFLC showed the better control performance than PD controller and GAFLS[10] for three-phase fault in nominal load which had used when tuning AFLC. To show the robustness of AFLC, we applied the proposed method to disturbances such as three-phase fault in heavy and light load. AFLC showed the better robustness than PD controller and GAFLC[10].

Digital Watermarking Using Subband Characteristics and Perceptual Weights of Wavelet Transform Image (웨이브릿 변환 영상의 부대역 특성과 인지가중치를 이용한 디지털 워터마킹)

  • Ryu, Kwon-Yeol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.7
    • /
    • pp.1254-1259
    • /
    • 2007
  • Watermark insertion methods on low frequency subbands in wavelet transform image are robust in attacks, but become reduction of invisibility. And watermark insertion methods on high frequency subbands have a good visibility, but are weak in attack. In this paper, we propose the method that improve invisibility and robustness of watermarks according as we adaptively control insertion intensity by using subband characteristics and perceptual weights. Experimental result, we show that the proposed method has excellent of invisibility and robustness more than the conventional method, according as it is improved with $1.7dB{\sim}2.6dB$ in invisibility, and is improved with $0.2{\sim}12.9$ in similarity measurement.