• Title/Summary/Keyword: robust-stability

Search Result 1,147, Processing Time 0.024 seconds

Robust Stabilization of Uncertain Nonlinear Systems via Fuzzy Modeling and Numerical Optimization Programming

  • Lee Jongbae;Park Chang-Woo;Sung Ha-Gyeong;Lim Joonhong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • This paper presents the robust stability analysis and design methodology of the fuzzy feedback linearization control systems. Uncertainty and disturbances with known bounds are assumed to be included in the Takagi-Sugeno (TS) fuzzy models representing the nonlinear plants. $L_2$ robust stability of the closed system is analyzed by casting the systems into the diagonal norm bounded linear differential inclusions (DNLDI) formulation. Based on the linear matrix inequality (LMI) optimization programming, a numerical method for finding the maximum stable ranges of the fuzzy feedback linearization control gains is also proposed. To verify the effectiveness of the proposed scheme, the robust stability analysis and control design examples are given.

Robust Stability Bounds for Discrete-Time Regulators with Computation Delays (연산지연을 가진 이산시간 레규레이터에 대한 강인한 안정성 유계)

  • 배종일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.2
    • /
    • pp.174-180
    • /
    • 1998
  • Robust stability of discrete-time regulators which utilize state predictors to compensate computation delays is considered. Novel expressions for the return difference matrices and the complementary sensitivity matrices at the input and the output of the regulator are found to obtain simple bounds for unstructured perturbations. Robust stability for pertubations of the system matrix and /or the gain matrix is also considered. under certain restriction on the nominal system simple bounds for the pertubations are obtained directly from the characteristic equation. It is shown that as far as the effect of the computation delays concerns these bounds have explicit relation to those for the unstructured pertubations.

  • PDF

Design of a Robust Backstepping Controller for a Robotic Load Driven by a Brushless DC Motor (로봇부하 구동용 BLDC 모터의 강인 백스테핑 제어기 설계)

  • Jung, Won-Chul;Hyun, Keun-Ho;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2753-2755
    • /
    • 2000
  • In this paper, the robust position tracking cotroller for a brushless DC motor driving a one-link robot manipulator is proposed. By using the backstepping approach, the adaptive and robust controller is appropriately designed to ensure global stability. The proposed robust backstepping controller can compensate for estimation errors in system parameters in the system with no structural changes in the controller and without destruction of the stability. The closed-loop stability of the system is shown using Lyapunov techniques. The tracking errors are shown to be globally uniformly bounded.

  • PDF

Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method (혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계)

  • 서성환;조희수;박홍배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

Adaptive Robust Control for Robot Manipulator with the Uncertain Bound Estimation and Implementation (불확실성의 경계를 추정하는 로봇 매니퓰레이터의 적응견실제어기 설계 및 실험)

  • 한명철;하인철
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In this paper, it is presented an adaptive robust control system to implement real-time control of a robot manipulator. There are Quantitative or qualitative differences between a real robot manipulator and a robot modeling. In order to compensate these differences, uncertain factors are added to a robot modeling. The uncertain factors come from imperfect knowledge of system parameters, payload change, friction, external disturbance, etc. Also, uncertainty is often nonlinear and time-varying. In the proceeding work, we proposed a class of robust control of a robot manipulator and provided the stability analysis. In the work, we propose a class of adaptive robust control of robot manipulator with bound estimation. Through experiments, the proposed adaptive robust control scheme is proved to be an efficient control technique for real-time control of a robot system using DSP.

A Nonlinear Robust Control of Robot Arm with Four Joints Based on Lyapunov Stability Analysis (리아프노프 안정성 해석에 기준한 4축 로봇 아암의 비선형 견실제어)

  • Hyeon, Gi-Kwon;Shim, Hyun-Seok;Yoon, Dae-sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.18 no.3
    • /
    • pp.157-166
    • /
    • 2015
  • In this paper, we proposed a new robust control scheme to implement stable control of robot manipulators including nonlinear perameters The proposed robust controller is composed of a nonlinear controller and linear compemsation controller. It shows a good robust performance in reaching mode which does not possess invariance property. Thus, the proposed nonlinear controller showed a good robust performance in the whole region, It was illustrated that the proposed control showed a good transient response and trajectory tracking performance for robot manipulator with four joint by experiments.

Robust Guaranteed Performance Control of Uncertain Linear Systems (불확정성 선형 시스템의 강인 성능 보장 제어)

  • Kim, Jin-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.553-559
    • /
    • 1999
  • The robust control problem of the linear systems with uncertainty is classified as the robust stability problem guaranteeing the stability and the robust performance problem guaranteeing the disired performance. In this paper, we considered the robust performance analysis problem, which find the upper buund of the quadratic performance of the uncertain linear system, and the robust guaranteed performance controller design problem which design a controller guaranteeing the desired quadratic performance. At first, we treated the analysis problem and presented the two results; one is dependent on the performance of the nominal system and another is independent on this. And we treated the design method guaranteeing the desired performance for the uncertain linear systems, Finally, we show the usefulness of our results by numerical examples.

  • PDF

A new approach on the robust control for robot manipulator using Krasovskii theorem (Krasovskii 정리를 이용한 로보트 매니퓰레이터의 강건제어에 관한 새로운 접근)

  • Kim, Chong-Soo;Park, Sei-Seung;Park, Chong-Kug
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.4
    • /
    • pp.590-595
    • /
    • 1996
  • The robust control technique is generally the iterative design method to determine a robust control for perturbed system with prescribed range of perturbation based on the robust stability measure. However, robot manipulator has the structured pertubation and the unstructured one. This paper proposes the robust technique for designing controller such that the trajectory of end-effector of robot manipulator tracks asymptotically the desired trajectory for all allowable variations in the manipulator's parameter. For satisfying asymptotical stability though we can not know the bound of perturbations and the parameter variations, the relation between the unknown parameter and the parameter of nominal system can be derived from Krasovskii theorem and we construct the new robust control using that relation. (author). 12 refs., 6 figs.

  • PDF

Robust Tracking Controller Design for TS Fuzzy System with Uncertaintie (불확실한 TS 퍼지 시스템을 위한 강인한 추종 제어기의 설계)

  • Jeon, Sang-Won;Lee, Sang-Jun;Lee, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.1955-1957
    • /
    • 2001
  • This paper propose the design method of robust tracking controller for nonlinear TS fuzzy system with uncertainties. The robust tracking controller design is presented by constraint of robust stability for nonlinear system. A sufficient condition of the robust stability is presented by LMI(Linear Matrix Inequality) soltuion in the sense of Lyapunov for TS fuzzy system with uncertainties. The effectiveness of the proposed robust tracking con design is demonstrated through a numerical simulatio.

  • PDF

Depth Control of Autonomous Underwater Vehicle Using Robust Tracking Control (강인추적 제어를 이용한 자율 무인 잠수정의 심도제어)

  • Chai, Chang-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.4
    • /
    • pp.66-72
    • /
    • 2021
  • Since the behavior of an autonomous underwater vehicle (AUV) is influenced by disturbances and moments that are not accurately known, the depth control law of AUVs must have the ability to track the input signal and to reject disturbances simultaneously. Here, we proposed robust tracking control for controlling the depth of an AUV. An augmented closed-loop system is represented by an error dynamic equation, and we can easily show the asymptotic stability of the overall system by using a Lyapunov function. The robust tracking controller is consisted of the internal model of the command signal and a state feedback controller, and it has the ability to track the input signal and reject disturbances. The closed-loop control system is robust to parameter uncertainties. Simulation results showed the control performance of the robust tracking controller to be better than that of a P + PD controller.