• Title/Summary/Keyword: robust extraction

Search Result 427, Processing Time 0.023 seconds

CLASSIFIED ELGEN BLOCK: LOCAL FEATURE EXTRACTION AND IMAGE MATCHING ALGORITHM

  • Hochul Shin;Kim, Seong-Dae
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2108-2111
    • /
    • 2003
  • This paper introduces a new local feature extraction method and image matching method for the localization and classification of targets. Proposed method is based on the block-by-block projection associated with directional pattern of blocks. Each pattern has its own eigen-vertors called as CEBs(Classified Eigen-Blocks). Also proposed block-based image matching method is robust to translation and occlusion. Performance of proposed feature extraction and matching method is verified by the face localization and FLIR-vehicle-image classification test.

  • PDF

Text Extraction in HIS Color Space by Weighting Scheme

  • Le, Thi Khue Van;Lee, Gueesang
    • Smart Media Journal
    • /
    • v.2 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • A robust and efficient text extraction is very important for an accuracy of Optical Character Recognition (OCR) systems. Natural scene images with degradations such as uneven illumination, perspective distortion, complex background and multi color text give many challenges to computer vision task, especially in text extraction. In this paper, we propose a method for extraction of the text in signboard images based on a combination of mean shift algorithm and weighting scheme of hue and saturation in HSI color space for clustering algorithm. The number of clusters is determined automatically by mean shift-based density estimation, in which local clusters are estimated by repeatedly searching for higher density points in feature vector space. Weighting scheme of hue and saturation is used for formulation a new distance measure in cylindrical coordinate for text extraction. The obtained experimental results through various natural scene images are presented to demonstrate the effectiveness of our approach.

  • PDF

Face Recognition based on SURF Interest Point Extraction Algorithm (SURF 특징점 추출 알고리즘을 이용한 얼굴인식 연구)

  • Kang, Min-Ku;Choo, Won-Kook;Moon, Seung-Bin
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.3
    • /
    • pp.46-53
    • /
    • 2011
  • This paper proposes a SURF (Speeded Up Robust Features) based face recognition method which is one of typical interest point extraction algorithms. In general, SURF based object recognition is performed in interest point extraction and matching. In this paper, although, proposed method is employed not only in interest point extraction and matching, but also in face image rotation and interest point verification. image rotation is performed to increase the number of interest points and interest point verification is performed to find interest points which were matched correctly. Although proposed SURF based face recognition method requires more computation time than PCA based one, it shows better recognition rate than PCA algorithm. Through this experimental result, I confirmed that interest point extraction algorithm also can be adopted in face recognition.

TAKES: Two-step Approach for Knowledge Extraction in Biomedical Digital Libraries

  • Song, Min
    • Journal of Information Science Theory and Practice
    • /
    • v.2 no.1
    • /
    • pp.6-21
    • /
    • 2014
  • This paper proposes a novel knowledge extraction system, TAKES (Two-step Approach for Knowledge Extraction System), which integrates advanced techniques from Information Retrieval (IR), Information Extraction (IE), and Natural Language Processing (NLP). In particular, TAKES adopts a novel keyphrase extraction-based query expansion technique to collect promising documents. It also uses a Conditional Random Field-based machine learning technique to extract important biological entities and relations. TAKES is applied to biological knowledge extraction, particularly retrieving promising documents that contain Protein-Protein Interaction (PPI) and extracting PPI pairs. TAKES consists of two major components: DocSpotter, which is used to query and retrieve promising documents for extraction, and a Conditional Random Field (CRF)-based entity extraction component known as FCRF. The present paper investigated research problems addressing the issues with a knowledge extraction system and conducted a series of experiments to test our hypotheses. The findings from the experiments are as follows: First, the author verified, using three different test collections to measure the performance of our query expansion technique, that DocSpotter is robust and highly accurate when compared to Okapi BM25 and SLIPPER. Second, the author verified that our relation extraction algorithm, FCRF, is highly accurate in terms of F-Measure compared to four other competitive extraction algorithms: Support Vector Machine, Maximum Entropy, Single POS HMM, and Rapier.

A Study on Robust Pattern Classification of Lung Sounds for Diagnosis of Pulmonary Dysfunction in Noise Environment (폐질환 진단을 위한 잡음환경에 강건한 폐음 패턴 분류법에 관한 연구)

  • Yeo, Song-Phil;Jeon, Chang-Ik;Yoo, Se-Keun;Kim, Duk-Young;Kim, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.3
    • /
    • pp.122-128
    • /
    • 2002
  • In this paper, a robust pattern classification of breath sounds for the diagnosis of pulmonary dysfunction in noise environment is proposed. The feature parameter extraction method by highpass lifter algorithm and PM(projection measure) algorithm are used. 17 different groups of breath sounds are experimentally classified and investigated. The classification has been performed by 6 different types of combinations with proposed methods to evaluate the performances, such as ARC with EDM and LCC with EDM, WLCC with EDM, ARC with PM, LCC with PM, WLCC with PM. Furthermore, all feature parameters are extracted to 80th orders by 5th orders step, and all experiments are evaluated in increasing noise environments by degrees SNR 24dB to 0dB. As a results, WLCC which is derived from highpass lifter algorithm, is selected for the feature parameter extraction method. Pm is more robust than EDM in noisy environments to test and compare experimental results. WLCC with PM method(WLCC/PM) has a better performance in an increasing noise environment for diagnosis of pulmonary dysfunction.

Parameter Extraction Procedure for Ion Implantation Profiles to Establish Robust Database based on Tail Function

  • Suzuki, Kunihiro;Kojima, Shuichi
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.4
    • /
    • pp.251-259
    • /
    • 2010
  • We proposed a tail function parameter extraction procedure for the establishment of a robust ion implantation database. We showed that, for the expression of ion implantation profiles, there are many local minimum values set for the third and fourth moment parameters of $\gamma$ and $\beta$ for the Pearson function that comprises the standard dual Pearson and tail functions. We proposed the use of a joined tail function as a mediate function to extract $\gamma$ and $\beta$, and demonstrated that this enables us to extract the parameters uniquely. Other parameters associated with channeling phenomena can also be simply and uniquely extracted by our procedure.

Infrared Visual Inertial Odometry via Gaussian Mixture Model Approximation of Thermal Image Histogram (열화상 이미지 히스토그램의 가우시안 혼합 모델 근사를 통한 열화상-관성 센서 오도메트리)

  • Jaeho Shin;Myung-Hwan Jeon;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.260-270
    • /
    • 2023
  • We introduce a novel Visual Inertial Odometry (VIO) algorithm designed to improve the performance of thermal-inertial odometry. Thermal infrared image, though advantageous for feature extraction in low-light conditions, typically suffers from a high noise level and significant information loss during the 8-bit conversion. Our algorithm overcomes these limitations by approximating a 14-bit raw pixel histogram into a Gaussian mixture model. The conversion method effectively emphasizes image regions where texture for visual tracking is abundant while reduces unnecessary background information. We incorporate the robust learning-based feature extraction and matching methods, SuperPoint and SuperGlue, and zero velocity detection module to further reduce the uncertainty of visual odometry. Tested across various datasets, the proposed algorithm shows improved performance compared to other state-of-the-art VIO algorithms, paving the way for robust thermal-inertial odometry.

Direct extraction method for base-collector distributed components of HBT small-signal hybrid-p model (HBT 소신호 Hybrid-P 모델의 베이스-컬렉터 분포 성분 직접 추출방법)

  • Seo, Yeong-Seok;Seok, Eun-Yeong;Kim, Gi-Chae;Park, Yong-Wan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.37 no.11
    • /
    • pp.17-22
    • /
    • 2000
  • A novel and robust direct parameter extraction method for hybrid-p equivalent circuit model of HBT is proposed. A new expression that can accurately resolve the base internal resistance from the measured S-parameters is derived, and it is not sensitive to the values of parasitic access inductance values. Based on the expression, six analytical expressions for the other parameters is developed and these expressions for hybrid-p equivalent circuit modeling ensure robust, fast, and reliable parameter extraction.

  • PDF

Robust Object Extraction Algorithm in the Sea Environment (해양환경에서 강건한 물표 추적 알고리즘)

  • Park, Jiwon;Jeong, Jongmyeon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.3
    • /
    • pp.298-303
    • /
    • 2014
  • In this paper, we proposed a robust object extraction and tracking algorithm in the IR image sequence acquired in the sea environment. In order to extract size-invariant object, we detect horizontal and vertical edges by using DWT and combine it to generate saliency map. To extract object region, binarization technique is applied to saliency map. The correspondences between objects in consecutive frames are defined by the calculating minimum weighted Euclidean distance as a matching measure. Finally, object trajectories are determined by considering false correspondences such as entering object, vanishing objects and false object and so on. The proposed algorithm can find trajectories robustly, which has shown by experimental results.

Illumination Influence Minimization Method for Efficient Object (영상에서 효율적인 객체 추출을 위한 조명 영향 최소화 기법)

  • Kim, Jae-Seoung;Lee, Ki-Jung;Whangbo, Taeg-Keun
    • Journal of Digital Contents Society
    • /
    • v.14 no.1
    • /
    • pp.117-124
    • /
    • 2013
  • This paper suggests the robust method of extraction for moving objects in illumination variation by using image sequence from an immovable camera. The most difficult part of the implication is the effect by illumination and noise. The object area is hardly estimated when the dusky area occurs in illumination variation by time change. This thesis describes the extraction of moving objects employed by Gaussian mixture model which is noise robust measure. Also, the report suggests the elimination method of illumination part in input image by the representative illumination image which is defined to minimize the illumination influence.