• Title/Summary/Keyword: robust extraction

Search Result 427, Processing Time 0.026 seconds

An Extraction of Moving Object Contour Using Active Contour Model (능동 윤곽선 모델을 이용한 이동 물체 윤곽선 추출)

  • 이상욱;권태하
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.123-130
    • /
    • 2000
  • In this paper, we propose an extracting method of moving object contour using active contour model from image sequences acquired by fixed camera. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Noises in boundary area of moving object we eliminated by morphological filter. The contour of segmented object is corrected by using active contour model for extracting accurate boundary of moving object. We apply the proposed method to highway image sequences and show the results of simulation.

  • PDF

Robust Contour Extraction of Moving Object based on Hue Gradient Background Model (색상 기울기 배경 모델 기반 안정적 동적 객체 윤곽 추출)

  • Lee, Je-Sung;Moon, Kyu-Hyung;Choi, Yoo-Joo
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.261-264
    • /
    • 2006
  • 본 논문은 조명의 변화가 심한 연속영상에서 동적객체를 안정적으로 추출하기 위하여 색상강도 및 기울기 기반 배경모델을 구축하고 이를 이용하여 입력영상으로부터 동적 객체의 윤곽선을 안정적으로 추출하는 기법을 제시한다. 제안기법에서는 우선, 동적객체가 포함되지 않은 배경 연속영상의 HSI 컬러공간에서 색상(Hue) 강도와 색상 기울기에 대한 배경모델을 생성한다. 실시간으로 입력되는 동적 객체를 포함한 연속영상에 대하여 각 화소에 대한 색상(Hue)성분을 추출하고 이웃 화소와의 색상성분에 대한 기울기 크기를 계산한다. 이를 기구축된 배경모델과 비교하여 그 차분값이 일정 임계값을 초과하는 경우 동적객체의 윤곽선으로 판별한다. 제안 기법은 극심한 조명 변화에 강건하게 동적 객체의 윤곽정보를 실시간 추출하였다. 본 논문에서는 기존 RGB 기반 배경 모델링 기법을 적용한 경우와의 비교 실험을 통하여 제안 기법의 안정성을 보였다.

  • PDF

Machine Printed and Handwritten Text Discrimination in Korean Document Images

  • Trieu, Son Tung;Lee, Guee Sang
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.30-34
    • /
    • 2016
  • Nowadays, there are a lot of Korean documents, which often need to be identified in one of printed or handwritten text. Early methods for the identification use structural features, which can be simple and easy to apply to text of a specific font, but its performance depends on the font type and characteristics of the text. Recently, the bag-of-words model has been used for the identification, which can be invariant to changes in font size, distortions or modifications to the text. The method based on bag-of-words model includes three steps: word segmentation using connected component grouping, feature extraction, and finally classification using SVM(Support Vector Machine). In this paper, bag-of-words model based method is proposed using SURF(Speeded Up Robust Feature) for the identification of machine printed and handwritten text in Korean documents. The experiment shows that the proposed method outperforms methods based on structural features.

Implementation of a Tone Correction System Through a Visualization of Melody Comparison (멜로디 비교 시각화를 통한 음정 교정 시스템 구현)

  • Lee, Hye-In;Park, Ju-Hyun;Lee, Seok-Pil
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.156-161
    • /
    • 2014
  • With the proliferation of digital music, public's interest in music and desire to sing well are increasing. This paper presents the implementation of a tone correction system through a visualization of comparison between music and humming data. For this we extract MIDI note from music and humming data and then design a matching engine using DTW algorithm which is for robust matching results against local timing variation and inaccurate tempo. This system is expected to correct the user's wrong tone by visualization and feedback from the result.

Design & Implementation of Lipreading System using Robust Lip Area Extraction (견고한 입술 영역 추출을 이용한 립리딩 시스템 설계 및 구현)

  • 이은숙;이호근;이지근;김봉완;이상설;이용주;정성태
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.05b
    • /
    • pp.524-527
    • /
    • 2003
  • 최근 들어 립리딩은 멀티모달 인터페이스 기술의 응용분야에서 많은 관심을 모으고 있다. 동적 영상을 이용한 립리딩 시스템에서 해결해야 할 주된 문제점은 상황 변화에 독립적인 얼굴 영역과 입술 영역을 추출하는 것이다. 본 논문에서는 움직임이 있는 영상에서 화자의 얼굴영역과 입술영역을 컬러, 조명등의 변화에 독립적으로 추출하기 위해 HSI 모델과 블록 매칭을 이용하였고 특징 점 추출에는 이미지 기반 방법인 PCA 기법을 이용하였다. 추출된 입술 파라미터와 음성 데이터에 각각 HMM 기반 패턴 인식 방법을 개별적으로 적용하여 단어를 인식하였고 각각의 인식 결과를 가중치를 주어 합병하였다. 실험 결과에 의하면 잡음으로 음성 인식률이 낮아지는 경우에 음성인식과 립리딩을 함께 사용함으로써 전체적인 인식 결과를 향상시킬 수 있었다.

  • PDF

Individual Identification Using Ear Region Based on SIFT (SIFT 기반의 귀 영역을 이용한 개인 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In recent years, ear has emerged as a new biometric trait, because it has advantage of higher user acceptance than fingerprint and can be captured at remote distance in an indoor or outdoor environment. This paper proposes an individual identification method using ear region based on SIFT(shift invariant feature transform). Unlike most of the previous studies using rectangle shape for extracting a region of interest(ROI), this study sets an ROI as a flexible expanded region including ear. It also presents an effective extraction and matching method for SIFT keypoints. Experiments for evaluating the performance of the proposed method were performed on IITD public database. It showed correct identification rate of 98.89%, and it showed 98.44% with a deformed dataset of 20% occlusion. These results show that the proposed method is effective in ear recognition and robust to occlusion.

Review of interface engineering for high-performance all-solid-state batteries (계면 제어를 기반으로 한 고성능 전고체 전지 연구)

  • Insu, Hwang;Hyeon Jeong, Lee
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.19-27
    • /
    • 2022
  • This review will discuss the effort to understand the interfacial reactions at the anode and cathode sides of all-solid-state batteries. Antiperovskite solid electrolytes have received increasing attention due to their low melting points and anion tunability which allow controlling microstructure and crystallographic structures of this material system. Antiperovskite solid electrolytes pave the way for the understanding relationship between critical current density and mechanical properties of solid electrolytes. Microstructure engineering of cathode materials has been introduced to mitigate the volume change of cathode materials in solid-state batteries. The hollow microstructure coupled with a robust outer oxide layer effectively mitigates both volume change and stress level of cathode materials induced by lithium insertion and extraction, thus improving the structural stability of the cathode and outer oxide layer, which results in stable cycling performance of all-solid-state batteries.

Impact localization method for composite structures subjected to temperature fluctuations

  • Gorgin, Rahim;Wang, Ziping
    • Smart Structures and Systems
    • /
    • v.30 no.4
    • /
    • pp.371-383
    • /
    • 2022
  • A novel impact localization method is presented based on impact induced elastic waves in sensorized composite structure subjected to temperature fluctuations. In real practices, environmental and operational conditions influence the acquired signals and consequently make the feature (particularly Time of Arrival (TOA)) extraction process, complicated and troublesome. To overcome this complication, a robust TOA estimation method is proposed based on the times in which the absolute amplitude of the signal reaches to a specific amplitude value. The presented method requires prior knowledge about the normalized wave velocity in different directions of propagation. To this aim, a finite element model of the plate was built in ABAQUS/CAE. The impact location is then highlighted by calculating an error value at different points of the structure. The efficiency of the developed impact localization technique is experimentally evaluated by dropping steel balls with different energies on a carbon fiber composite plate with different temperatures. It is demonstrated that the developed technique is able to localize impacts with different energies even in the presence of noise and temperature fluctuations.

Blockchain-Enabled Decentralized Clustering for Enhanced Decision Support in the Coffee Supply Chain

  • Keo Ratanak;Muhammad Firdaus;Kyung-Hyune Rhee
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.260-263
    • /
    • 2023
  • Considering the growth of blockchain technology, the research aims to transform the efficiency of recommending optimal coffee suppliers within the complex supply chain network. This transformation relies on the extraction of vital transactional data and insights from stakeholders, facilitated by the dynamic interaction between the application interface (e.g., Rest API) and the blockchain network. These extracted data are then subjected to advanced data processing techniques and harnessed through machine learning methodologies to establish a robust recommendation system. This innovative approach seeks to empower users with informed decision-making abilities, thereby enhancing operational efficiency in identifying the most suitable coffee supplier for each customer. Furthermore, the research employs data visualization techniques to illustrate intricate clustering patterns generated by the K-Means algorithm, providing a visual dimension to the study's evaluation.

A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation (다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM)

  • Geunhyeong Park;HyungGi Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.