• 제목/요약/키워드: robust control system

검색결과 2,484건 처리시간 0.032초

Sliding mode control with adaptive VSS observer

  • Chen, Yi-Feng;Tsutomu Mita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1924-1929
    • /
    • 1991
  • The conventional sliding mode control and variable structure control (VSC) of nonlinear uncertain system are well known for their robust property and simplity of control law. However, the use of them is only pardonable on the assumption that the upper-bound of parameter variation or nonlinearity is known and that the complete information about state is available. Though the former has been solved with adaptive robust control theory recently, the latter seems not to be solved. In this paper, we try to solve this problem using the technique of VSS adaptive robust control theory. That is, we propose a VSS adaptive observer and a sliding mode control incorporated with this observer. We can prove the robust stability of the closed system applying the Lyapunov's second method.

  • PDF

Robust 제어기를 이용한 발전 여자 시스템 전력 안정도 개선 (PSS Improvement of Generator Excitation System using Robust Controller)

  • 홍현문;최재호;류홍우
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.364-367
    • /
    • 1996
  • This paper deals with the design and evaluation of the robust controller for generator excitation system to improve the steady state and transient stabilities. The nonlinear characteristics of the system is treated as model uncertainties, and then the robust control techniques are introduced into the PSS design to take into account these uncertainties at the controller design stage. The performance of the designed controller is examined by extensive non-linear time domain simulation. It is shown that the performance of the robust controller is superior to that of the conventional PSS in all cases studied.

  • PDF

광디스크 드라이브를 위한 강인 제어기 설계 (Robust Servo System for Optical Disk Drive Systems)

  • 박범호;정정주;백종식
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제54권1호
    • /
    • pp.1-10
    • /
    • 2005
  • This paper proposes a new and simple input prediction method for robust servo system. A robust tracking control system for optical disk drives was proposed recently based on both Coprime Factorization (CF) and Zero Phase Error Tracking (ZPET) control. The CF control system can be designed simply and systematically. Moreover, this system has not only stability but also robustness to parameter uncertainties and disturbance rejection capability. Since optical disk tracking servo system can detect only tracking error, it was proposed that the reference input signal for ZPET could be estimated from tracking errors. In this paper, we propose a new control structure for the ZPET controller. It requires less memory than the previously proposed method for the reference signal generation. Numerical simulation results show that the proposed method is effective.

혼합강도 $H_{\infty}$ 제어기법을 이용한 강인한 부하주파수 제어기 설계 (Design of Robust Load Frequency Controller using Mixed Sensitivity based $H_{\infty}$ norm)

  • 정형환;김상효;이정필;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권3호
    • /
    • pp.88-98
    • /
    • 2000
  • In this paper, a robust controller using $H_{\infty}$ control theory has been designed for the load frequency control of interconnected 2-area power system. The main advantage of the proposed $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Representation of uncertainties is modeled by multiplicative uncertainly. In the mixed sensitivity problems, disturbance attenuation and uncertainty of the system is treated simultaneously. The robust stability and the performance of model uncertainties are represented by frequency weighted transfer function. The design of load frequency controller for each area was based on state-space approach. The comparative computer simulation results for the proposed controller and the conventional techniques such as the optimal control and the PID one were analyzed at the additions of various disturbances. Their deviation magnitude of frequency and tie line power flow at each area were mainly evaluated. Also the testing results of robustness for the cases that the perturbations of the all parameters of power system were amounted to about 20% were introduced. It was approved that the resultant performances of the proposed $H_{\infty}$ controller with mixed sensitivity were more robust and stable than the one of conventional controllers.

  • PDF

A Robust Adaptive Control for Permanent Magnet Synchronous Motor Subject to Parameter Uncertainties and Input Saturations

  • Wu, Shaofang;Zhang, Jianwu
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권5호
    • /
    • pp.2125-2133
    • /
    • 2018
  • To achieve high performance speed regulation, a robust adaptive speed controller is proposed for the permanent magnet synchronous motor (PMSM) subject to parameter uncertainties and input saturations in this paper. A nonlinear adaptive control is introduced to compensate the PMSM speed tracking errors due to uncertainties, disturbances and control input saturation constraints. By combining the adaptive control and the nonlinear robust control based on the interconnection and damping assignment (IDA) strategy, a new robust adaptive control is designed for speed regulation of PMSM. Stability and robustness of the closed-loop control system involved with the constrained control inputs rather than unconstrained control inputs are validated. Simulations for PMSM control in the presence of uncertainties and saturations nonlinearities show that the proposed approach is effective to regulate speed, and the average tracking error using the proposed approach is at least 32% smaller than the compared methods.

Recursive Design of Nonlinear Disturbance Attenuation Control for STATCOM

  • Liu Feng;Mei Shengwei;Lu Qiang;Goto Masno
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권spc2호
    • /
    • pp.262-269
    • /
    • 2005
  • In this paper, a nonlinear robust control approach is applied to design a controller for the Static Synchronous Compensator (STATCOM). A robust control dynamic model of STATCOM in a one-machine, infinite-bus system is established with consideration of the torque disturbance acting on the rotating shaft of the generator set and the disturbance to the output voltage of STATCOM. A novel recursive approach is utilized to construct the energy storage function of the system such that the solution to the disturbance attenuation control problem is acquired, which avoids the difficulty involved in solving the Hamilton-Jacobi-Issacs (HJI) inequality. Sequentially, the nonlinear disturbance attenuation control strategy of STATCOM is obtained. Simulation results demonstrate that STATCOM with the proposed controller can more effectively improve the voltage stability, damp the oscillation, and enhance the transient stability of power systems compared to the conventional PI+PSS controller.

전문가 제어기를 이용한 직류 전동기의 강인 제어 (Robust speed control of DC motor using Expert Hybrid controller)

  • 조현섭;오훈;전정채;유인호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2799-2801
    • /
    • 2000
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint. the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF

직접 외란 추정을 통한 역구동성 유압 구동 시스템의 임피던스 제어 (Impedance Control of Backdrivable Hydraulic Actuation Systems with Explicit Disturbance Estimation)

  • 유선겸;정완균
    • 로봇학회논문지
    • /
    • 제14권4호
    • /
    • pp.348-356
    • /
    • 2019
  • The backdrivable servovalve is a desirable component for force and interaction control of hydraulic actuation systems because it provides direct force generation mechanical impedance reduction by its own inherent backdrivability. However, high parametric uncertainty and friction effects inside the hydraulic actuation system significantly degrade its advantage. To solve this problem, this letter presents a disturbance-adaptive robust internal-loop compensator (DA-RIC) to generate ideal interactive control performance from the backdrivable-servovalve-based system. The proposed control combines a robust internal-loop compensator structure (RIC) with an explicit disturbance estimator designed for asymptotic disturbance tracking, such that the controlled system provide stable and ideal dynamic behavior for impedance control, while completely compensating the disturbance effects. With the aid of a backdrivable servovalve, we show that the proposed control structure can be implemented based on a simplified nominal model, and the controller enables implementation without accurate knowledge of the target system parameters and disturbances. The performance and properties of the proposed controller are verified by simulation and experiments.

강인한 성능을 가지는 모델추종형 $H_{\infty}$ 제어 시스템의 설계 (A Design on Model-Following $H_{\infty}$ Control System Having Robust Performance)

  • 황현준
    • 한국정보통신학회논문지
    • /
    • 제13권5호
    • /
    • pp.913-921
    • /
    • 2009
  • 본 연구에서는 강인한 성능을 가지는 해집단내에서 기준모델의 출력을 최적으로 추종하도록 유전 알고리즘을 사용하여 가중치 함수와 설계 파라메타 ${\gamma}$를 동시에 최적화함으로써, 강인한 성능에 관한 필요충분조건식을 만족함은 물론 설계사양에 따른 만족스러운 응답특성을 보이는 강인한 성능을 가지는 모델추종형 $H_{\infty}$ 제어기의 설계법을 제시하고 시뮬레이션을 통하여 그 유용성을 확인한다.

Robust Control Design for Robots with Flexible Joint and Link

  • Jung, Eui-Jin;Ha, In-Chul;Kim, Chang-Gyul;Han, Myung-Chul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.113.5-113
    • /
    • 2001
  • In this work, we consider the flexible manipulator system. Generally, the manipulator system may often be made on the base of the imperfect modeling, joint friction, payload change, and external disturbances. These elements are uncertain factors. These uncertainties and flexibility make difficult to control the system. To overcome these defects, a class of robust control law is proposed for the flexible manipulator system and the singular perturbation approach is applied. To show the effectiveness of this control law, simulation is presented for one degree of freedom flexible joint and flexible link system.

  • PDF