• Title/Summary/Keyword: robotic transplanter

Search Result 14, Processing Time 0.024 seconds

Development of a Robotic Transplanter for Bedding Plants(III)-Development of a Robotic Transplanter (육묘용 로봇 이식기의 개발(III)-로봇이식기의 개발-)

  • 류관희;이희환;김기영;한재성
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.06c
    • /
    • pp.238-246
    • /
    • 1997
  • This study was conducted to develop a robotic transplanter for bedding plants. The robotic transplanter consisted of machine vision system, a manipulator, a gripper and plug tray transfer system. The performance of the robotic transplanter was tested and compared by two different transplanting methods, which were to consider the leaf orientation of seedlings and not to. Results of this study were as follows. (1) A cartesian coordinate manipulator for a robotic transplanter with 3 degree of freedom was constructed. The accuracy of position control was $\pm$1 mm. (2) The robotic transplanter with the machine vision system, the manipulator, the gripper and the transfer system was developed and tested with a shovel-type finger. Without considering the orientation of leaves, the success rates of transplanting healthy cucumber seedlings in 72-cell and 128-cell plug-trays were 95.5% and 94.5% respectively. Considering the orientation of leaves, the success rates of transplanting healthy cucumber seedling in 72-cell and 128-cell plug-trays were 96.0% and 95.0% respectively.

  • PDF

Development of a Robotic Transplanter for Bedding Plants (I)-Development of the Machine Vision System of a Robotic Transplanter- (육묘용 로봇 이식기의 개발(I)-로봇 이식기의 기계시각 시스템의 개발-)

  • 류관희;이희환;김기영;황호준
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.12a
    • /
    • pp.392-400
    • /
    • 1997
  • This study was conducted to develope the machine vision system of a robotic transplanter for bedding plants. Specific objectives of this study were 1) to get coordinates of the healthy seedlings except empty cells and bad seedlings in high-density plug tray, and 2) to get the angle of the leaves of the healthy seedlings to avoid damage to the seedlings by gripper. The results of this study are summarized as follows. (1) The machine vision system of a robotic transplanter was developed. (2) The success rates of detecting empty cell and bad seedlings in 72-cell and 128-cell plug trays were 98.8% and 94.9% respectively. (3) The success rates of calculating the angle of leaves in 72-cell and 128-cell plug trays were 93.5% and 91.0% respectively.

  • PDF

Development of a Robotic Transplanter for Bedding Plants(II)-Development of the Gripper of a Robotic Transplanter- (육묘용 로봇 이식기의 개발(II)-로봇 이식기의 그리퍼의 개발-)

  • 류관희;이희환
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1997.12a
    • /
    • pp.88-98
    • /
    • 1997
  • This study was conducted to develope the gripper of a robotic transplanter for bedding plants. Specific objectives of this study were 1) to develope the gripper for plug tray seedlings and 2) to find the suitable finger type for transplanting. The performance of gripper was tested and compared by two different transplanting methods, which were to consider the leaf position of seedlings and not to consider. The results of this study are summarized as follows. (1) The gripper of a robotic transplanter was developed and tested with 4 different finger type. (2) The shovel type finger was suitable for transplanting with the least percent of damaged seedlings.

  • PDF

Development of a Robotic Transplanter for Bedding Plants(II) - Transplantiing Gripper - (육묘용 로봇 이식기의 개발(II) - 이식 그리퍼 -)

  • 류관희;김기영;이희환;박정인
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.325-332
    • /
    • 1997
  • The use of a robotic transplanter reduces the labor requirement in the greenhouse by carrying out repetitive tasks in an accurate and reliable manner. The transplanter manipulates seedlings by means of end-effector. The end-effector is designed differently from an industrial robot because it manulates biological seedlings of variable size, shape, position, and orientation. This study was conducted to develop an end-effector of a robotic transplanter for bedding plants. The development of an end-effector included selection of the best finger type for the transplanting operation. The performance of developed end-effector was tested and compared with two different transplanting schemes depending on the leaf-orientation consideration. The end-effector developed in this research reliably handled seedlings during transplanting task. Results showed that the shovel type finger was suitable for transplanting with the damaging seedlings.

  • PDF

Development of a Robotic Transplanter Using Machine Vision for Bedding Plants (기계시각을 이용한 육묘용 로봇 이식기의 개발)

  • 류관희;김기영;이희환;한재성;황호준
    • Journal of Bio-Environment Control
    • /
    • v.6 no.1
    • /
    • pp.55-65
    • /
    • 1997
  • This study was conducted to develop a robotic transplanter for bedding plants. The robotic transplanter consisted of machine vision system, manipulator attached with the specially designed gripper, and plug tray transfer system. Results of this study were as follows. 1. A machine vision system for a robotic transplanter was developed. The success rates of detecting empty cells and bad seedlings in 72-cell and 128-cell plug-trays for cucumber seedlings were 98.8% and 94.9% respectively. The success rates of identifying leaf orientation for 72- cell and 128-cell plug-trays were 93.5% and 91.0%, respectively. 2. A cartesian coordinate manipulator for a robotic transplanter with 3 degrees of freedom was constructed. The accuracy of position control was $\pm$ 1mm. 3. The robotic transplanter was tested with a shovel-type finger. Without considering leaf orientation, the success rates of transplanting healthy cucumber seedlings for 72-cell and 128-cell plug-trays were 95.5% and 94.5%, respectively. Considering leaf orientation, the success rates of transplanting healthy cucumber seedling in 72-cell and 128-cell plug-trays were 96.0% and 95.0%, respectively.

  • PDF

Development of a Robotic Transplanter for Bedding Plants(I) - Machine Vision System - (육묘용 로봇 이식기의 개발(I) - 기계시각 시스템 -)

  • 류관희;김기영;이희환;황호준
    • Journal of Biosystems Engineering
    • /
    • v.22 no.3
    • /
    • pp.317-324
    • /
    • 1997
  • This study was conducted to develope a machine vision system for a robotic transplanter for bedding plants. Specific objectives of this study were 1) to get coordinates of the healthy seedlings in high-density plug tray, and 2) to get the angle of the leaves of the healthy seedlings to avoid the damage to seedlings by gripper. Results of this study were summarized as follows. (1) The machine vision system of a robotic transplanter was developed. (2) Success rates of detecting empty cell and bad seedlings for 72-cell and 128-cell plug-trays were 98.8% and 94, 9% respectively. (3) Success rates of calculating the angle of leaves fer 72-cell and 128-cell plug-trays were 93.5% and 91.0% respectively.

  • PDF

Development of a Robotic Transplanter for Pot-Seedlings of Plant Factory (식물공장용 포트묘 로봇 이식기 개발)

  • 류관희;김기영;류영선;한재성;신태웅
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.277-284
    • /
    • 1998
  • This study was conducted to develop m automatic pot-seedling transplanter for plant factory. The transplanter consists of a gripper, row-spacing control device, nursing tray transfer system, growing trough transfer system, and gripper moving device. The gripper picks up pot-seedling. The gripper moving device moves the gripper between nursing tray and growing-flat. Nursing trays are moved to workspace by the nursing tray transfer system. The growing trough transfer system was developed to move growing trough to workspace. The row-spacing control device was used to adjust the distance between adjacent plants traversely. The results of this study are as follows. The transplanting capacity of the developed transplanter was 7.1 seconds per cycle or 1.18 second per pot-seedling. Successful planting was 98.9% without seedlings and 95.8% with seedlings.

  • PDF

Development of a Gripper for Robotic Transplanter and Evaluation of Its Transplanting Performance (육묘용 로봇이식기 그리퍼의 개발 및 이식 성능 평가)

  • 류관희;김기영;박정인
    • Journal of Biosystems Engineering
    • /
    • v.23 no.3
    • /
    • pp.271-276
    • /
    • 1998
  • A gripper mechanical design using a pneumatic system was developed to successfully grip, hold, and release a seedling plug for transplanting it. The gripper comprised of two air cylinders and shovel-type fingers. The gripper can grasp and hold a seedling by sliding the two fingers attached to the two separate air-cylinders, mounted at an angle of 15$^{\circ}$ When releasing a plug, retraction of the fingers gives a seedling little attachment to the gripper. To prevent seedling from attaching to the fingers, press-plates were attached to the end of the gipper. Transplanting performance of the developed gripper was tested with cucumber seedlings at different soil moisture contents. Overall transplanting performance of developed gipper was higher than the performance of the previously developed gripper. Best transplanting result was achieved at medium level of soil moisture content.

  • PDF