• 제목/요약/키워드: robot trajectory

검색결과 841건 처리시간 0.024초

이족보행로봇의 최적 걸음새에 관한 연구 (A Study on the Gait Optimization of a Biped Robot)

  • 공정식;노경곤;김진걸
    • 한국정밀공학회지
    • /
    • 제21권7호
    • /
    • pp.115-123
    • /
    • 2004
  • This paper deals with the gait optimization of via points on biped robot. ZMP(Zero Moment point) is the most important index in a biped robot's dynamic walking stability. To stable walking of a biped robot, leg's trajectory and a desired ZMP trajectory is required, balancing motion is solved by FDM(Finite Difference Method). In this paper, optimal index is defined to dynamically stable walking of a biped robot, and genetic algorithm is applied to optimize gait trajectory and balancing motion of a biped robot. By genetic algorithm, the index of walking parameter is efficiently optimized, and dynamic walking stability is verified by ZMP verification equation. Genetic algorithm is only applied to balancing motion, and is totally applied to whole trajectory. All of the suggested motions of biped robot are investigated by simulations and verified through the real implementation.

선형 역덤벨 모델을 이용한 이족 보행 로봇의 기준 ZMP 궤적 생성 및 보행 구현 (Reference ZMP Trajectory Generation and Implementation for a Biped Robot via Linear Inverted Dumbbell Model (LIDM))

  • 이상용;김화수
    • 한국정밀공학회지
    • /
    • 제29권4호
    • /
    • pp.417-425
    • /
    • 2012
  • This paper presents reference ZMP trajectory generation and implementation for a biped robot via linear inverted dumbbell model (LIDM), which can consider the effect of external momentum on the center of mass (COM) of robot. Based on a reference ZMP trajectory derived by using LIDM, a base trajectory is proposed not only to make the locomotion of robot similar to that of human but also to facilitate its implementation and tuning. In order to realize a dynamic walking using the proposed trajectory, compliance, impedance and ZMP tracking controllers are adopted together. Extensive experiments show that the proposed locomotion of a biped robot is stable and also, similar to that of human. Further researches on balance recovery of a biped robot will be carried out to guarantee its robust locomotion in combination with the proposed trajectory.

무인 운반용 유연궤도 이동로봇 시스템 제작에 관한 연구 (A Study on Manufacturing of Mobile Robot System having Flexible Trajectory for Manless-Transportation)

  • 이부형;송필재
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.284-288
    • /
    • 2003
  • 본 논문에서는 유궤도 이동로봇의 이점을 활용하고 궤도의 유연성을 높여주기 위해 금속 테잎형태의 유궤도를 갖는 이동로봇 시스템을 제작하였다 제작된 무인 운반용 이동로봇은 초음파 및 광(적외선)센서가 탑재된 센서부, 모터 및 엔코더로 이루어진 모터부. 사용자 인터페이스부, 중앙제어부, 컴퓨터 인터페이스부로 구성된다. 초음파센서를 이용하여 이동 경로상의 장애물을 감지하고, 광(적외선)센서를 이용하여 금속 테잎의 궤도를 정확히 감지하여 원하는 위치에 이동할 수 있도록 하였다 개발된 유궤도 이동로봇은 금속 테잎형태의 궤도를 사용함으로써 궤도의 유연성을 높여줄 백만 아니라 무인 이동로봇들의 하드웨어적 소프트웨어적인 비용을 상당부분 절감할 수 있도록 하였다.

  • PDF

단일곡률궤적을 이용한 이동물체의 포획 알고리즘 (A Capturing Algorithm of Moving Object using Single Curvature Trajectory)

  • 최병석;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제12권2호
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

모델참조 적응 퍼지제어기를 이용한 휠베이스 이동 로봇의 궤적 추적 제어 (A Trajectory Tracking Control of Wheeled Mobile Robot Using a Model Reference Adaptive Fuzzy Controller)

  • 김승우;서기성;조영완
    • 제어로봇시스템학회논문지
    • /
    • 제15권7호
    • /
    • pp.711-719
    • /
    • 2009
  • This paper presents a design scheme of torque control for wheeled mobile robot(WMR) to asymptotically track the target reference trajectory. By considering the kinematic model of WMR, trajectory tracking control generates the desired tracking trajectory, which is transformed into the command velocity vector for the real WMR to track the target reference trajectory. The dynamic equation of the state error between the target reference trajectory and the desired tracking trajectory is represented by Takagi-Sugeno fuzzy model, and this model is used as the reference model for the real mobile robot error dynamics to follow. The control parameters are updated by adaptive laws that are designed for the error states of the real WMR to asymptotically follow the states of reference error model for the desired tracking trajectory. The proposed control is applied to a typical wheeled mobile robot and simulation studies are carried out to verify the validity and effectiveness of the control scheme.

임피던스 제어와 적분 슬라이딩 모드 제어를 이용한 메카넘 휠 이동로봇의 강인한 궤도 추적 제어 (Robust Trajectory Tracking Control of a Mecanum Wheeled Mobile Robot Using Impedance Control and Integral Sliding Mode Control)

  • 우철민;이민욱;윤태성
    • 로봇학회논문지
    • /
    • 제13권4호
    • /
    • pp.256-264
    • /
    • 2018
  • Unlike normal wheels, the Mecanum wheel enables omni-directional movement regardless of the orientation of a mobile robot. In this paper, a robust trajectory tracking control method is developed based on the dynamic model of the Mecanum wheel mobile robot in order that the mobile robot can move along the given path in the environment with disturbance. The method is designed using the impedance control to make the mobile robot to track the path, and the integral sliding mode control for robustness to disturbance. The good performance of the proposed method is verified using the MATLAB /Simulink simulation and also through the experiment on an actual Mecanum wheel mobile robot. In both the simulation and the experimentation, we make the mobile robot move along a reference trajectory while maintaining the robot's orientation at a constant angle to see the characteristics of the Mecanum wheel.

비전 센서와 초음파 센서를 이용한 이동 로봇의 자율 주행 알고리즘 (An Algorithm of Autonomous Navigation for Mobile Robot using Vision Sensor and Ultrasonic Sensor)

  • 이재광;박종훈;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 A
    • /
    • pp.19-22
    • /
    • 2003
  • This paper proposes an algorithm for navigation of an autonomous mobile robot with vision sensor. For obstacle avoidance, we used a curvature trajectory method. Using this method, translational and rotational speeds are controlled independently and the mobile robot traces a smooth curvature trajectory that consists of circle trajectories to a target point. While trying to avoid obstacles, the robot fan be goal-directed using curvature trajectory.

  • PDF

이동물체 포획을 위한 최적 경로 계획 (Optimal Trajectory Planning for Capturing a Mobile Object)

  • 황철호;이상헌;조방현;이장명
    • 제어로봇시스템학회논문지
    • /
    • 제10권8호
    • /
    • pp.696-702
    • /
    • 2004
  • An optimal trajectory generation algorithm for capturing a moving object by a mobile robot in real-time is proposed in this paper. The linear and rotational velocities of the moving object are estimated using the Kalman filter, as a state estimator. For the estimation, the moving object is tracked by a 2-DOF active camera mounted on the mobile robot, which enables a mobile manipulator to track the mobile robot until the capturing moment. The optimal trajectory for capturing the moving object is dependent on the initial conditions of the mobile robot as well as the moving object. Therefore, real-time trajectory planning for the mobile robot is definitely required for the successful capturing of the moving object. The performance of proposed algorithm is verified through the real experiments and the superiority is demonstrated by comparing to other algorithms.

목표 ZMP 궤적 기반 휴머노이드 로봇 이족보행의 최적 관절궤적 생성 (Optimal Joint Trajectory Generation for Biped Walking of Humanoid Robot based on Reference ZMP Trajectory)

  • 최낙윤;최영림;김종욱
    • 로봇학회논문지
    • /
    • 제8권2호
    • /
    • pp.92-103
    • /
    • 2013
  • Humanoid robot is the most intimate robot platform suitable for human interaction and services. Biped walking is its basic locomotion method, which is performed with combination of joint actuator's rotations in the lower extremity. The present work employs humanoid robot simulator and numerical optimization method to generate optimal joint trajectories for biped walking. The simulator is developed with Matlab based on the robot structure constructed with the Denavit-Hartenberg (DH) convention. Particle swarm optimization method minimizes the cost function for biped walking associated with performance index such as altitude trajectory of clearance foot and stability index concerning zero moment point (ZMP) trajectory. In this paper, instead of checking whether ZMP's position is inside the stable region or not, reference ZMP trajectory is approximately configured with feature points by which piece-wise linear trajectory can be drawn, and difference of reference ZMP and actual one at each sampling time is added to the cost function. The optimized joint trajectories realize three phases of stable gait including initial, periodic, and final steps. For validation of the proposed approach, a small-sized humanoid robot named DARwIn-OP is commanded to walk with the optimized joint trajectories, and the walking result is successful.

유전알고리즘을 이용한 유연한 보행로봇 (Smooth Walking Robot Using Genetic Algorithm)

  • 한경수;김상범;김진걸
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.450-453
    • /
    • 2002
  • This paper is concerned with smooth walking robot using genetic algorithm. The new walking algorithm is proposed and we simulated and experimented the algorithm. We suggested the leg trajectory algorithm and balancing trajectory algorithm by applying genetic algorithm. First the leg trajectory algorithm generated the smooth trajectory. Also the balancing trajectory generated the optimal trajectory. We compared results with the previous walking algorithm. It showed that the new proposed algorithm generated the better walking trajectory.

  • PDF