• Title/Summary/Keyword: robot navigation/localization

Search Result 192, Processing Time 0.031 seconds

Precise Outdoor Localization of a GPS-INS Integration System Using Discrete Wavelet Transforms and Unscented Particle Filter (이산 웨이블릿 변환과 Unscented 파티클 필터를 이용한 GPS-INS 결합 시스템의 실외 정밀 위치 추정)

  • Seo, Won-Kyo;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.6
    • /
    • pp.82-90
    • /
    • 2011
  • This paper proposes an advanced outdoor localization algorithm of a GPS(global positioning system)-INS(inertial navigation system) integration system. In order to reduce noise from the internal INS sensors, discrete wavelet transform and variable threshold method are utilized. The UPF (unscented particle filter) combines GPS information and INS signals to implement precise outdoor localization algorithm and to reduce noise caused by the acceleration, deceleration, and unexpected slips. The conventional de-noising method is mainly carried out using a low pass filter and a high pass filter which essentially result in signal distortions. This newly proposed system utilizes the vibration information of actuator according to fluctuations of the velocity to minimize signal distortions. The UPF also resolves non-linearities of the actuator and non-normal distributions of noises. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.

A Moving Camera Localization using Perspective Transform and Klt Tracking in Sequence Images (순차영상에서 투영변환과 KLT추적을 이용한 이동 카메라의 위치 및 방향 산출)

  • Jang, Hyo-Jong;Cha, Jeong-Hee;Kim, Gye-Young
    • The KIPS Transactions:PartB
    • /
    • v.14B no.3 s.113
    • /
    • pp.163-170
    • /
    • 2007
  • In autonomous navigation of a mobile vehicle or a mobile robot, localization calculated from recognizing its environment is most important factor. Generally, we can determine position and pose of a camera equipped mobile vehicle or mobile robot using INS and GPS but, in this case, we must use enough known ground landmark for accurate localization. hi contrast with homography method to calculate position and pose of a camera by only using the relation of two dimensional feature point between two frames, in this paper, we propose a method to calculate the position and the pose of a camera using relation between the location to predict through perspective transform of 3D feature points obtained by overlaying 3D model with previous frame using GPS and INS input and the location of corresponding feature point calculated using KLT tracking method in current frame. For the purpose of the performance evaluation, we use wireless-controlled vehicle mounted CCD camera, GPS and INS, and performed the test to calculate the location and the rotation angle of the camera with the video sequence stream obtained at 15Hz frame rate.

Improved Exploration Algorithm Using Reliability Index of Thinning Based Topological Nodes

  • Kwon, Tae-Bum;Song, Jae-Bok;Lee, Soo-Yong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.250-255
    • /
    • 2005
  • For navigation of a service robot, mapping and localization are very important. To estimate the robot pose, the map of the environment is required and it can be built by exploration or SLAM. Exploration is the fundamental task of guiding a robot autonomously during mapping such that it covers the entire environment with its sensors. In this paper, an efficient exploration scheme based on the position probability of the end nodes of a topological map is proposed. In this scheme, a topological map is constructed in real time using the thinning-based approach. The robot then updates the position probability of each end node maintaining its position at the current location based on the Bayesian update rule using the range data. From this probability, the robot can determine whether or not it needs to visit the specific end node to examine the environment around this node. Various experiments show that the proposed exploration scheme can perform exploration more efficiently than other schemes in that, in most cases, exploration for the entire environment can be completed without directly visiting everywhere in the environment.

  • PDF

Development of Smart Mobility System for Persons with Disabilities (장애인을 위한 스마트 모빌리티 시스템 개발)

  • Yu, Yeong Jun;Park, Se Eun;An, Tae Jun;Yang, Ji Ho;Lee, Myeong-Gyu;Lee, Chul-Hee
    • Journal of Drive and Control
    • /
    • v.19 no.4
    • /
    • pp.97-103
    • /
    • 2022
  • Low fertility rates and increased life expectancy further exacerbate the process of an aging society. This is also reflected in the gradual increase in the proportion of vulnerable groups in the social population. The demand for improved mobility among vulnerable groups such as the elderly or the disabled has greatly driven the growth of the electric-assisted mobility device market. However, such mobile devices generally require a certain operating capability, which limits the range of vulnerable groups who can use the device and increases the cost of learning. Therefore, autonomous driving technology needs to be introduced to make mobility easier for a wider range of vulnerable groups to meet their needs of work and leisure in different environments. This study uses mini PC Odyssey, Velodyne Lidar VLP-16, electronic device and Linux-based ROS program to realize the functions of working environment recognition, simultaneous localization, map generation and navigation of electric powered mobile devices for vulnerable groups. This autonomous driving mobility device is expected to be of great help to the vulnerable who lack the immediate response in dangerous situations.

Topological Map Building Based on Areal Voronoi Graph (영역 보로노이 그래프를 기반한 위상 지도 작성)

  • Son, Young-Jun;Park, Gwi-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2450-2452
    • /
    • 2004
  • Map building is essential to a mobile robot navigation system. Localization and path planning methods depend on map building strategies. A topological map is commonly constructed using the GVG(Generalized Voronoi Graph). The advantage of the GVG based topological map is compactness. But the GVG method have many difficulties because it consists of collision-free path. In this paper, we proposed an extended map building method, the AVG (Areal Voronoi Graph) based topological map. The AVG based topological map consists of collision-free area. This feature can improve map building, localization and path planning performance.

  • PDF

A localization method using sensor fusion system (다중 센서 시스템을 이용한 로봇 위치 인식 제어 방법)

  • Lim, Jea-Gyun;You, Jong-Jin;Hyun, Woong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1767-1768
    • /
    • 2007
  • This paper represents a map building system of Embedded Linux mobile robot. We propose a localization method which uses multiple sensors such as indoor GPS and encoder sensor for simultaneous map building system. In this paper we proposed a multiple sensor system for SLAM. For this, we developed a sensor based navigation algorithm and grid based map building algorithm under the Embedded Linux O.S. We proved this system's validity through field test

  • PDF

The Pathplanning of Navigation Algorithm using Dynamic Window Approach and Dijkstra (동적창과 Dijkstra 알고리즘을 이용한 항법 알고리즘에서 경로 설정)

  • Kim, Jae Joon;Jee, Gui-In
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.94-96
    • /
    • 2021
  • In this paper, we develop a new navigation algorithm for industrial mobile robots to arrive at the destination in unknown environment. To achieve this, we suggest a navigation algorithm that combines Dynamic Window Approach (DWA) and Dijkstra path planning algorithm. We compare Local Dynamic Window Approach (LDWA), Global Dynamic Window Approach(GDWA), Rapidly-exploring Random Tree (RRT) Algorithm. The navigation algorithm using Dijkstra algorithm combined with LDWA and GDWA makes mobile robots to reach the destination. and obstacles faced during the path planning process of LDWA and GDWA. Then, we compare on time taken to arrive at the destination, obstacle avoidance and computation complexity of each algorithm. To overcome the limitation, we seek ways to use the optimized navigation algorithm for industrial use.

  • PDF

Accurate Calibration of Odometry Errors for Wheeled Mobile Robots by using Experimental Orientation Errors (차륜형 이동로봇의 방향각오차를 이용한 오도메트리 정밀보정기법)

  • Jung, Changbae;Jung, Daun;Chung, Woojin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.319-326
    • /
    • 2014
  • Accurate estimation of the robot's position has an important role in autonomous navigation. Odometry is one of the most widely used techniques for mobile robot positioning. However, odometry has a well-known drawback that the position errors are accumulated when the travel distance increases. The UMBmark method is the conventional odometry calibration scheme for two wheel differential mobile robots. In the UMBmark method, the approximations for small angles are used in order to simplify the calculations. In this paper, we propose the new calibration scheme by using experimental orientation errors. Kinematic parameters can be calculated accurately without approximations by using experimental orientation errors. The numerical simulation and experimental results show that the odometry accuracy can be improved by the proposed method.

Monocular Vision and Odometry-Based SLAM Using Position and Orientation of Ceiling Lamps (천장 조명의 위치와 방위 정보를 이용한 모노카메라와 오도메트리 정보 기반의 SLAM)

  • Hwang, Seo-Yeon;Song, Jae-Bok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.164-170
    • /
    • 2011
  • This paper proposes a novel monocular vision-based SLAM (Simultaneous Localization and Mapping) method using both position and orientation information of ceiling lamps. Conventional approaches used corner or line features as landmarks in their SLAM algorithms, but these methods were often unable to achieve stable navigation due to a lack of reliable visual features on the ceiling. Since lamp features are usually placed some distances from each other in indoor environments, they can be robustly detected and used as reliable landmarks. We used both the position and orientation of a lamp feature to accurately estimate the robot pose. Its orientation is obtained by calculating the principal axis from the pixel distribution of the lamp area. Both corner and lamp features are used as landmarks in the EKF (Extended Kalman Filter) to increase the stability of the SLAM process. Experimental results show that the proposed scheme works successfully in various indoor environments.