• Title/Summary/Keyword: robot genome

Search Result 9, Processing Time 0.028 seconds

Development of Gridding Robot System for Genome Research (유전체 연구용 그리딩 로봇 시스템의 개발)

  • 추창환;서동현;김찬수;박지영;임용표;김기대
    • Journal of Biosystems Engineering
    • /
    • v.26 no.4
    • /
    • pp.391-398
    • /
    • 2001
  • A robot system for clone replication and gridding, which is a preliminary state of the genome research, was developed and evaluated its performance. This gridding robot system consisted of 1) a gridding heat that replicated the clone, 2) a manipulator, as a part of body of robot, which transferred the gridding head along x-, y-, z-axis, 3) a well plate arranging board, 4) a sterilization unit, and 5) a control unit. Performance of the system was evaluated with 1) repeatability of the robot system, 2) clone replication efficiency, 3) time requirement of the replication, and 4) sterilization efficiency. The repeatability error of the robot system showed 0.219 mm and 0.094 mm in the direction of x- and y-axis, respectively. The success rate of the clone replication with the gridding head was 100% on the membrane filter. The time required for the replication was four minutes and fifty-five seconds from the four 96 well plates to a 384 well plate meanwhile the required time with well experienced hand labor was three minutes thirty-five seconds. The gridding operation of clone could not be done by hand labor and the required time with robot system for the gridding on the membrance filter with the control program 5$\times$5: 1 copy and 384 gridding pins was twenty minutes and twenty-five seconds. The efficiency of the sterilization was considered to be satisfactory since no growth of fungi was found around the area of replication in the membrane filter.

  • PDF

Development of Automatic Well-plate Changing Robot System for Genome Project (유전체 연구를 위한 Well-plate 자동 교환 시스템의 개발)

  • Na, Gun-Young;Kim, Ki-Dae;Lee, Hyun-Dong;Lee, Young-Gyu;Kim, Chan-Soo
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.35-44
    • /
    • 2004
  • In this study, the automatic system exchanging well-plates was developed as a basic stage of the genome project. The developed system consisted of the plate fixing well-plates, the well-plate cassette, the head to move a well-plate from the well-plate cassette to the plate fixing well-plates before genome work or from the plate to the cassette after the work, the manipulator to move the head on the X, Y and Z axes and the control system. The performance test to exchange well-plates with the robotic system developed was carried out. The time to set an well-plate from the well-plate cassette onto the board fixing well-plates was 55 seconds and the time for 9 ones was 8 minutes and 15 seconds. It took 57 seconds to move a well-plate from the board to the cassette and 8 minutes and 33 seconds for 9 ones.

  • PDF

The Origin of Artificial Species: Genetic Robot

  • Kim Jong-Hwan;Lee Kang-Hee;Kim Yong-Duk
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.564-570
    • /
    • 2005
  • This paper provides a basis for investigating 'The Origin of Artificial Species,' as a robot can be considered as an artificial creature. To design an artificial creature, its general internal architecture is presented and its artificial chromosomes are proposed as its essential components. Rity as an artificial creature is developed in a virtual world of PC to test the world's first robotic 'chromosomes,' which are a set of computerized DNA (Deoxyribonucleic acid) codes for creating robots (artificial creatures) that can have their own personality, and can ultimately reproduce their kind, or even evolve as a distinct species. The effectiveness of the artificial chromosomes is demonstrated by implanting the genetic code into two Ritys living in a virtual world, in order to define their personality.

Development of microarrayer for manufacturing DNA chip used in genome project (II) - The performance test of developed robot system (유전자 검색을 위한 DNA chip 제작용 로봇 시스템의 개발(II) - 로봇 시스템의 성능실험)

  • 이현동;김기대;김찬수;김성환;나건영;임용표
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.07a
    • /
    • pp.333-338
    • /
    • 2002
  • 인간 게놈 프로젝트가 지속적으로 진행됨에 따라 계속적으로 대량의 유전체 정보가 밝혀지고 있으며, 이미 밝혀진 유전체의 염기서열을 바탕으로 다양한 생물의 전체 유전자의 기능을 효율적으로 해석하는 기술의 개발이 요구되고 있다. 식물 게놈 프로젝트 또한 식량확보라는 단순하면서도 전략적인 차원에서 가장 절실히 요구되는 기본 과학기술 연구분야이다. (중략)

  • PDF

Development of Microarrayer for Manufacturing DNA Chip (DNA 칩 제작을 위한 로봇 시스템의 개발)

  • 이현동;김기대;나건영;임용표
    • Journal of Biosystems Engineering
    • /
    • v.28 no.5
    • /
    • pp.429-438
    • /
    • 2003
  • This study exploits the robot system which is necessary in gene study and bio-technology industry. As well, a DNA chip, which of use has been increased recently, can be manufactured with this system. The robot consists of a device spotting DNA on the silylated slide, a well plate, a bed for fixing well plates, devices of washing and drying the pin in DNA spotting .device, a distillation-water vessel, and a discharge vessel of wash water. We made the period of sticking DNA to the pin on the well plate to be 15 seconds. The spot size of DNA was set to be 0.28 mm on the average by bringing the slide into contact with pin during 1 second. If DNA is spotted in minimum space possible about 0.32mm, this system can stick about 8,100 DNA spots on the well plate with this rate. Analyzing the procedure: Movement starts, Pin washes, dries, and smears DNA on the well plate. Spotting DNA onto 12 chips took 2 minutes and 50 seconds.

Development of Robot System for Colony Picking (I) - Image processing algorithm for detecting position of colony (콜로니 픽킹 로봇 시스템의 개발 (I) - 콜로니 위치확인 영상처리 알고리즘 -)

  • 이현동;김기대;김찬수;나건영;임용표
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.02a
    • /
    • pp.215-220
    • /
    • 2003
  • 인간 게놈 프로젝트가 지속적으로 진행됨에 따라 계속적으로 대량의 유전체 정보가 밝혀지고 있으며, 이미 밝혀진 유전체의 염기서열을 바탕으로 다양한 생물의 전체 유전자의 기능을 효율적으로 해석하는 기술의 개발이 요구되고 있다. 식물 게놈 프로젝트 또한 식량확보라는 단순하면서도 전략적인 차원에서 가장 절실히 요구되는 기본 과학기술 연구분야이다. 게놈(genome)은 유전자(gene)와 염색체(chromosome)의 합성어로 한 생물체가 지닌 모든 유전 정보의 집합체이고, 동종의 재결합 DNA 분자를 포함하는 동일 세포의 개체를 클론(clone)이라 하며, 클론의 집합체를 콜로니(Colony)라 한다 생물체의 모든 유전정보를 가진 게놈은 핵산(nucleotide acid)이라 불리는 염기로 이루어져 있으며, 이들은 서로 상보적인 쌍을 이루어 두 가닥으로 형성되어 있다. 이를 한 쌍의 base pair라 한다. (중략)

  • PDF

A bio-text mining system using keywords and patterns in a grid environment

  • Kwon, Hyuk-Ryul;Jung, Tae-Sung;Kim, Kyoung-Ran;Jahng, Hye-Kyoung;Cho, Wan-Sup;Yoo, Jae-Soo
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2007.02a
    • /
    • pp.48-52
    • /
    • 2007
  • As huge amount of literature including biological data is being generated after post genome era, it becomes difficult for researcher to find useful knowledge from the biological databases. Bio-text mining and related natural language processing technique are the key issues in the intelligent knowledge retrieval from the biological databases. We propose a bio-text mining technique for the biologists who find Knowledge from the huge literature. At first, web robot is used to extract and transform related literature from remote databases. To improve retrieval speed, we generate an inverted file for keywords in the literature. Then, text mining system is used for extracting given knowledge patterns and keywords. Finally, we construct a grid computing environment to guarantee processing speed in the text mining even for huge literature databases. In the real experiment for 10,000 bio-literatures, the system shows 95% precision and 98% recall.

  • PDF

Development of microarrayer for manufacturing DNA chip used in genome project (유전자 검색을 위한 DNA 칩 제작용 microarrayer의 개발)

  • Lee, Hyun-Dong;Kim, Ki-Dae;Kim, Chan-Soo;Lim, Yong-Pyo;Park, Jung-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.76-88
    • /
    • 2003
  • This study exploits the robot system which is necessary in gene study, bio-technology industry. As well, it can achieve the job of DNA chip manufacturing whose use rate has been increased recently. The robot consists of DNA spotting device for spotting DNA on the silylated slide and well plate, bed for fixing well-plate, washing & drying device of washing and drying the pin part of DNA spotting device, distillation-water vessel, and discharge vessel of wash water. We made the term of sticking DNA to the pin on well plate to be 15 seconds. The spot size of DNA was set to be 0.28 mm on the average by bringing the slide into contact with pin for 1 second. At this rate, if DNA is spotted in the minimum space possible of about 0.32mm, it can stick about 8,100 DNA spots on the well plate. Analyzing the procedure: Movement starts. Pin washes, dries, and smears DNA on the well plate. Spots DNA onto 12 chips takes 2 minutes and 50 seconds.

  • PDF