• Title/Summary/Keyword: robot based learning

Search Result 483, Processing Time 0.024 seconds

A Research on V2I-based Accident Prevention System for the Prevention of Unexpected Accident of Autonomous Vehicle (자율주행 차량의 돌발사고 방지를 위한 V2I 기반의 사고 방지체계 연구)

  • Han, SangYong;Kim, Myeong-jun;Kang, Dongwan;Baek, Sunwoo;Shin, Hee-seok;Kim, Jungha
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.86-99
    • /
    • 2021
  • This research proposes the Accident Prevention System to prevent collision accident that can occur due to blind spots such as crossway or school zone using V2I communication. Vision sensor and LiDAR sensor located in the infrastructure of crossway somewhere like that recognize objects and warn vehicles at risk of accidents to prevent accidents in advance. Using deep learning-based YOLOv4 to recognize the object entering the intersection and using the Manhattan Distance value with LiDAR sensors to calculate the expected collision time and the weight of braking distance and secure safe distance. V2I communication used ROS (Robot Operating System) communication to prevent accidents in advance by conveying various information to the vehicle, including class, distance, and speed of entry objects, in addition to collision warning.

AdaBoost-based Real-Time Face Detection & Tracking System (AdaBoost 기반의 실시간 고속 얼굴검출 및 추적시스템의 개발)

  • Kim, Jeong-Hyun;Kim, Jin-Young;Hong, Young-Jin;Kwon, Jang-Woo;Kang, Dong-Joong;Lho, Tae-Jung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.11
    • /
    • pp.1074-1081
    • /
    • 2007
  • This paper presents a method for real-time face detection and tracking which combined Adaboost and Camshift algorithm. Adaboost algorithm is a method which selects an important feature called weak classifier among many possible image features by tuning weight of each feature from learning candidates. Even though excellent performance extracting the object, computing time of the algorithm is very high with window size of multi-scale to search image region. So direct application of the method is not easy for real-time tasks such as multi-task OS, robot, and mobile environment. But CAMshift method is an improvement of Mean-shift algorithm for the video streaming environment and track the interesting object at high speed based on hue value of the target region. The detection efficiency of the method is not good for environment of dynamic illumination. We propose a combined method of Adaboost and CAMshift to improve the computing speed with good face detection performance. The method was proved for real image sequences including single and more faces.

Human-like Balancing Motion Generation based on Double Inverted Pendulum Model (더블 역 진자 모델을 이용한 사람과 같은 균형 유지 동작 생성 기술)

  • Hwang, Jaepyung;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.12 no.2
    • /
    • pp.239-247
    • /
    • 2017
  • The purpose of this study is to develop a motion generation technique based on a double inverted pendulum model (DIPM) that learns and reproduces humanoid robot (or virtual human) motions while keeping its balance in a pattern similar to a human. DIPM consists of a cart and two inverted pendulums, connected in a serial. Although the structure resembles human upper- and lower-body, the balancing motion in DIPM is different from the motion that human does. To do this, we use the motion capture data to obtain the reference motion to keep the balance in the existence of external force. By an optimization technique minimizing the difference between the motion of DIPM and the reference motion, control parameters of the proposed method were learned in advance. The learned control parameters are re-used for the control signal of DIPM as input of linear quadratic regulator that generates a similar motion pattern as the reference. In order to verify this, we use virtual human experiments were conducted to generate the motion that naturally balanced.

Confidence Measure of Depth Map for Outdoor RGB+D Database (야외 RGB+D 데이터베이스 구축을 위한 깊이 영상 신뢰도 측정 기법)

  • Park, Jaekwang;Kim, Sunok;Sohn, Kwanghoon;Min, Dongbo
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.9
    • /
    • pp.1647-1658
    • /
    • 2016
  • RGB+D database has been widely used in object recognition, object tracking, robot control, to name a few. While rapid advance of active depth sensing technologies allows for the widespread of indoor RGB+D databases, there are only few outdoor RGB+D databases largely due to an inherent limitation of active depth cameras. In this paper, we propose a novel method used to build outdoor RGB+D databases. Instead of using active depth cameras such as Kinect or LIDAR, we acquire a pair of stereo image using high-resolution stereo camera and then obtain a depth map by applying stereo matching algorithm. To deal with estimation errors that inevitably exist in the depth map obtained from stereo matching methods, we develop an approach that estimates confidence of depth maps based on unsupervised learning. Unlike existing confidence estimation approaches, we explicitly consider a spatial correlation that may exist in the confidence map. Specifically, we focus on refining confidence feature with the assumption that the confidence feature and resultant confidence map are smoothly-varying in spatial domain and are highly correlated to each other. Experimental result shows that the proposed method outperforms existing confidence measure based approaches in various benchmark dataset.

Development of a Korean chatbot system that enables emotional communication with users in real time (사용자와 실시간으로 감성적 소통이 가능한 한국어 챗봇 시스템 개발)

  • Baek, Sungdae;Lee, Minho
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.429-435
    • /
    • 2021
  • In this study, the creation of emotional dialogue was investigated within the process of developing a robot's natural language understanding and emotional dialogue processing. Unlike an English-based dataset, which is the mainstay of natural language processing, the Korean-based dataset has several shortcomings. Therefore, in a situation where the Korean language base is insufficient, the Korean dataset should be dealt with in detail, and in particular, the unique characteristics of the language should be considered. Hence, the first step is to base this study on a specific Korean dataset consisting of conversations on emotional topics. Subsequently, a model was built that learns to extract the continuous dialogue features from a pre-trained language model to generate sentences while maintaining the context of the dialogue. To validate the model, a chatbot system was implemented and meaningful results were obtained by collecting the external subjects and conducting experiments. As a result, the proposed model was influenced by the dataset in which the conversation topic was consultation, to facilitate free and emotional communication with users as if they were consulting with a chatbot. The results were analyzed to identify and explain the advantages and disadvantages of the current model. Finally, as a necessary element to reach the aforementioned ultimate research goal, a discussion is presented on the areas for future studies.

Artificial Intelligence for Assistance of Facial Expression Practice Using Emotion Classification (감정 분류를 이용한 표정 연습 보조 인공지능)

  • Dong-Kyu, Kim;So Hwa, Lee;Jae Hwan, Bong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1137-1144
    • /
    • 2022
  • In this study, an artificial intelligence(AI) was developed to help with facial expression practice in order to express emotions. The developed AI used multimodal inputs consisting of sentences and facial images for deep neural networks (DNNs). The DNNs calculated similarities between the emotions predicted by the sentences and the emotions predicted by facial images. The user practiced facial expressions based on the situation given by sentences, and the AI provided the user with numerical feedback based on the similarity between the emotion predicted by sentence and the emotion predicted by facial expression. ResNet34 structure was trained on FER2013 public data to predict emotions from facial images. To predict emotions in sentences, KoBERT model was trained in transfer learning manner using the conversational speech dataset for emotion classification opened to the public by AIHub. The DNN that predicts emotions from the facial images demonstrated 65% accuracy, which is comparable to human emotional classification ability. The DNN that predicts emotions from the sentences achieved 90% accuracy. The performance of the developed AI was evaluated through experiments with changing facial expressions in which an ordinary person was participated.

Facial Point Classifier using Convolution Neural Network and Cascade Facial Point Detector (컨볼루셔널 신경망과 케스케이드 안면 특징점 검출기를 이용한 얼굴의 특징점 분류)

  • Yu, Je-Hun;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.241-246
    • /
    • 2016
  • Nowadays many people have an interest in facial expression and the behavior of people. These are human-robot interaction (HRI) researchers utilize digital image processing, pattern recognition and machine learning for their studies. Facial feature point detector algorithms are very important for face recognition, gaze tracking, expression, and emotion recognition. In this paper, a cascade facial feature point detector is used for finding facial feature points such as the eyes, nose and mouth. However, the detector has difficulty extracting the feature points from several images, because images have different conditions such as size, color, brightness, etc. Therefore, in this paper, we propose an algorithm using a modified cascade facial feature point detector using a convolutional neural network. The structure of the convolution neural network is based on LeNet-5 of Yann LeCun. For input data of the convolutional neural network, outputs from a cascade facial feature point detector that have color and gray images were used. The images were resized to $32{\times}32$. In addition, the gray images were made into the YUV format. The gray and color images are the basis for the convolution neural network. Then, we classified about 1,200 testing images that show subjects. This research found that the proposed method is more accurate than a cascade facial feature point detector, because the algorithm provides modified results from the cascade facial feature point detector.

Directionally Adaptive Aliasing and Noise Removal Using Dictionary Learning and Space-Frequency Analysis (사전 학습과 공간-주파수 분석을 사용한 방향 적응적 에일리어싱 및 잡음 제거)

  • Chae, Eunjung;Lee, Eunsung;Cheong, Hejin;Paik, Joonki
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.8
    • /
    • pp.87-96
    • /
    • 2014
  • In this paper, we propose a directionally adaptive aliasing and noise removal using dictionary learning based on space-frequency analysis. The proposed aliasing and noise removal algorithm consists of two modules; i) aliasing and noise detection using dictionary learning and analysis of frequency characteristics from the combined wavelet-Fourier transform and ii) aliasing removal with suppressing noise based on the directional shrinkage in the detected regions. The proposed method can preserve the high-frequency details because aliasing and noise region is detected. Experimental results show that the proposed algorithm can efficiently reduce aliasing and noise while minimizing losses of high-frequency details and generation of artifacts comparing with the conventional methods. The proposed algorithm is suitable for various applications such as image resampling, super-resolution image, and robot vision.

Deep Learning Based Pine Nut Detection in UAV Aerial Video (UAV 항공 영상에서의 딥러닝 기반 잣송이 검출)

  • Kim, Gyu-Min;Park, Sung-Jun;Hwang, Seung-Jun;Kim, Hee Yeong;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2021
  • Pine nuts are Korea's representative nut forest products and profitable crops. However, pine nuts are harvested by climbing the trees themselves, thus the risk is high. In order to solve this problem, it is necessary to harvest pine nuts using a robot or an unmanned aerial vehicle(UAV). In this paper, we propose a deep learning based detection method for harvesting pine nut in UAV aerial images. For this, a video was recorded in a real pine forest using UAV, and a data augmentation technique was used to supplement a small number of data. As the data for 3D detection, Unity3D was used to model the virtual pine nut and the virtual environment, and the labeling was acquired using the 3D transformation method of the coordinate system. Deep learning algorithms for detection of pine nuts distribution area and 2D and 3D detection of pine nuts objects were used DeepLabV3+, YOLOv4, and CenterNet, respectively. As a result of the experiment, the detection rate of pine nuts distribution area was 82.15%, the 2D detection rate was 86.93%, and the 3D detection rate was 59.45%.

Learning Rules for AMR of Collision Avoidance using Fuzzy Classifier System (퍼지 분류자 시스템을 이용한 자율이동로봇의 충돌 회피학습)

  • 반창봉;심귀보
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.5
    • /
    • pp.506-512
    • /
    • 2000
  • In this paper, we propose a Fuzzy Classifier System(FCS) makes the classifier system be able to carry out the mapping from continuous inputs to outputs. The FCS is based on the fuzzy controller system combined with machine learning. Therefore the antecedent and consequent of a classifier in FCS are the same as those of a fuzzy rule. In this paper, the FCS modifies input message to fuzzified message and stores those in the message list. The FCS constructs rule-base through matching between messages of message list and classifiers of fuzzy classifier list. The FCS verifies the effectiveness of classifiers using Bucket Brigade algorithm. Also the FCS employs the Genetic Algorithms to generate new rules and modifY rules when performance of the system needs to be improved. Then the FCS finds the set of the effective rules. We will verifY the effectiveness of the poposed FCS by applying it to Autonomous Mobile Robot avoiding the obstacle and reaching the goal.

  • PDF