• Title/Summary/Keyword: road spectra

Search Result 13, Processing Time 0.02 seconds

An application of operational deflection shapes and spatial filtration for damage detection

  • Mendrok, Krzysztof;Wojcicki, Jeremi;Uhl, Tadeusz
    • Smart Structures and Systems
    • /
    • v.16 no.6
    • /
    • pp.1049-1068
    • /
    • 2015
  • In the paper, the authors propose the application of operational deflection shapes (ODS) for the detection of structural changes in technical objects. The ODS matrix is used to formulate the spatial filter that is further used for damage detection as a classical modal filter (Meirovitch and Baruh 1982, Zhang et al. 1990). The advantage of the approach lies in the fact that no modal analysis is required, even on the reference spatial filter formulation and other components apart from structural ones can be filtered (e.g. harmonics of rotational velocity). The proposed methodology was tested experimentally on a laboratory stand, a frame-like structure, excited from two sources: an impact hammer, which provided a wide-band excitation of all modes, and an electro-dynamic shaker, which simulated a harmonic component in the output spectra. The damage detection capabilities of the proposed method were tested by changing the structural properties of the model and comparing the results with the original ones. The quantitative assessment of damage was performed by employing a damage index (DI) calculation. Comparison of the output of the ODS filter and the classical modal filter is also presented and analyzed in the paper. The closing section of the paper describes the verification of the method on a real structure - a road viaduct.

Measurement of Tire Structural Vibration Noise Using Spatial Transformation of Sound Field Technique (음장의 공간적 변환기법을 이용한 타이어 구조 진동 소음 측정)

  • Kim, Byoung-Sam
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.11-19
    • /
    • 1995
  • The Interaction between tire and road is responsible for the excited vibration of the tire, and It is also important for the sound radiation. In this paper. measurement of tire structural vibration noise from a chassis dynamometer using Spatial Transformation of Sound Field(STSF) technique is studied. STSF involving a scan that uses an array of transducers over a planar surface close to the source is under investigation. From cross spectra measurement during the scan, a principal component representing the sound field is extracted. Any power descriptor of the near field can then be investigated by means of near-field acoustic holography, while the distant field can be determined by application of Helmholtz integral equation. The results of the measurement were used to obtain the radiation sound pattern from the center line of the tire, and to locate the radiation sound generating regions in the vicinity of the tire.

  • PDF

Estimation of Cumulative Axle-Load Spectrum for Axle-Load Distribution Standard by Vehicle Type (차종별 축하중 분포 정량화를 위한 누적 축하중 스펙트럼 추정연구)

  • An Ji-Hwan;Ohm Byung-Sik;Kim Yeon-Bok
    • International Journal of Highway Engineering
    • /
    • v.8 no.3 s.29
    • /
    • pp.29-37
    • /
    • 2006
  • The primary objective of this study is to characterize traffic axle loadings that consider Korea specific traffic conditions for developing mechanistic-based pavement design method as a part of Korea Pavement Research Program(KPRP). Although the concept of equivalent single axle load(ESAL) has been generally used since the 1960s for the pavement design, the mechanistic-based pavement design procedure requires more accurate axle loading data on the specific pavement. In this study, axle loading data were collected according to vehicle type and highway functional classification. Axle-load spectrum was then standardized by cumulative density function(cdf), because the axle load spectrum could vary from the observed site, truck traffic volume, and truck type, Finally, this study presented the procedure and S-shaped exponential models for characterizing axle load spectra according to vehicle type and highway functional classification.

  • PDF