• Title/Summary/Keyword: road side unit

Search Result 60, Processing Time 0.028 seconds

Edge Caching Based on Reinforcement Learning Considering Edge Coverage Overlap in Vehicle Environment (차량 환경에서 엣지 커버리지 오버랩을 고려한 강화학습 기반의 엣지 캐싱)

  • Choi, Yoonjeong;Lim, Yujin
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.110-113
    • /
    • 2022
  • 인터넷을 통해 주위 사물과 연결된 차량은 사용자에게 편리성을 제공하기 위해 다양한 콘텐츠를 요구하는데 클라우드로부터 가져오는 시간이 비교적 오래 걸리기 때문에 차량과 물리적으로 가까운 위치에 캐싱하는 기법들이 등장하고 있다. 본 논문에서는 기반 시설이 밀집하게 설치된 도시 환경에서 maximum distance separable(MDS) 코딩을 사용해 road side unit(RSU)에 캐싱하는 방법에 대해 연구하였다. RSU의 중복된 서비스 커버리지 지역을 고려하여 차량의 콘텐츠 요구에 대한 RSU hit ratio를 높이기 위해 deep Q-learning(DQN)를 사용하였다. 실험 결과 비교 알고리즘보다 hit raito 측면에서 더 높은 성능을 보이는 것을 증명하였다.

Message Batch verification scheme using Bloom Filter in VANET (VANET환경에서 BloomFilter를 이용한 메시지 일괄검증 기법)

  • Kim, Su-Hyun;Lee, Im-Yeong;Park, Doo-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.768-769
    • /
    • 2011
  • VANET(Vehicular Ad-hoc Network)는 MANET(Mobile Ad-hoc Network)의 한 형태로, 다수의 차량들이 무선통신을 이용하여 차량 간 통신 또는 차량과 RSU(Road Side Unit)사이의 통신을 제공하는 차세대 네트워킹 기술이다. VANET환경에서 기존의 그룹 서명 방식을 이용한 메시지 서명 및 검증이 이루어진다면, 통신 차량이 많아질수록 오버헤드가 발생하는 단점을 지니고 있다. 이에 따라, 본 논문에서는 다수의 차량 간 통신 시에 보다 효율적인 메시지 검증을 위해 Bloom Filter를 이용한 메시지 일괄 검증 기법을 제안한다.

Secure and Efficient Traffic Information System Utilizing IPFS and Blockchain in Vehicular Ad-hoc Network (Vehicular Ad-hoc Network 환경에서 IPFS와 블록체인을 활용한 안전하고 효율적인 교통정보시스템)

  • Park, Hanwool;Heo, Gabin;Doh, Inshil
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.260-263
    • /
    • 2022
  • 현재의 교통정보시스템은 수집된 정보를 서버에서 가공하여 서비스하는 형태로 이루어져 있다. 이러한 형태는 네트워크 구성이 비교적 단순하고 유지관리 비용이 적게 든다는 장점이 있지만, 반면에 실시간성이 저하되고 보안이 제대로 보장되지 않을 수 있다는 문제가 있으며, 최근 많은 연구가 이루어지고 있는 VANET 환경에서의 교통정보시스템도 broadcast storm의 가능성을 안고 있다. 본 연구에서 제안하는 교통정보시스템은 자동차가 수집한 돌발 상황에 대한 데이터를 RSU(Road Side Unit)가 수신하고, 이후 메시지를 노드들에게 보낼 때 블록체인에 업로드함으로써 보안성과 broadcast storm 문제들을 해결할 수 있으며, raw data 를 IPFS 에 저장하여 시스템 고도화에 사용할 수 있어 참여자들이 교통 상황에 대해 신속하게 대응할 수 있도록 하는 장점을 갖는다.

A Study and Performance Analysis of TORA Routing Protocol in Vehicular Adhoc Networks

  • R.Jeevitha;K.Thilakavalli;D.Rajagopal
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.9
    • /
    • pp.195-201
    • /
    • 2024
  • Vehicular Ad-hoc Networks (VANETs) became very popular in few years and it has been widely used in research and industry communities. VANET is a collection of wireless vehicle nodes forming a temporary network without using any centralized Road Side Unit (RSU). VANET is a subset of Mobile Adhoc Networks (MANET). It improves the safety of vehicles. It also supports Intelligent Transportation Systems.Routing is the major component of communication protocols in VANETs. Packets are to be routed from the source node to destination node. Because of frequent topology changes and routing overhead, selection of routing protocol in VANET is a great challenge. There are various routing protocols available for VANET. This paper involves study of Temporally Ordered Routing protocol (TORA) and performance metrics are analyzed with the help of NS2 Simulator.

Traffic Flow Sensing Using Wireless Signals

  • Duan, Xuting;Jiang, Hang;Tian, Daxin;Zhou, Jianshan;Zhou, Gang;E, Wenjuan;Sun, Yafu;Xia, Shudong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3858-3874
    • /
    • 2021
  • As an essential part of the urban transportation system, precise perception of the traffic flow parameters at the traffic signal intersection ensures traffic safety and fully improves the intersection's capacity. Traditional detection methods of road traffic flow parameter can be divided into the micro and the macro. The microscopic detection methods include geomagnetic induction coil technology, aerial detection technology based on the unmanned aerial vehicles (UAV) and camera video detection technology based on the fixed scene. The macroscopic detection methods include floating car data analysis technology. All the above methods have their advantages and disadvantages. Recently, indoor location methods based on wireless signals have attracted wide attention due to their applicability and low cost. This paper extends the wireless signal indoor location method to the outdoor intersection scene for traffic flow parameter estimation. In this paper, the detection scene is constructed at the intersection based on the received signal strength indication (RSSI) ranging technology extracted from the wireless signal. We extracted the RSSI data from the wireless signals sent to the road side unit (RSU) by the vehicle nodes, calibrated the RSSI ranging model, and finally obtained the traffic flow parameters of the intersection entrance road. We measured the average speed of traffic flow through multiple simulation experiments, the trajectory of traffic flow, and the spatiotemporal map at a single intersection inlet. Finally, we obtained the queue length of the inlet lane at the intersection. The simulation results of the experiment show that the RSSI ranging positioning method based on wireless signals can accurately estimate the traffic flow parameters at the intersection, which also provides a foundation for accurately estimating the traffic flow state in the future era of the Internet of Vehicles.

Design and Implementation of a Multi-Interface Mobile Gateway for Seamless Handoff Sciences (끊김 없는 핸드오프를 위한 다중 인터페이스 이동형 게이트웨이 설계 및 구현)

  • Choi, Hyun-Jun;Lee, Chae-Seok;Lee, Sung-Ho;Kim, Jong-Deck
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.6B
    • /
    • pp.474-482
    • /
    • 2012
  • Mobile Gateway(MG) is a wireless LAN device to provide internet services to a passenger on vehicles like a bus. For using internet services, MG connects the Road Side Unit AP(RSU AP) based on WLAN .To provide a stable communication service on the moving vehicle, handoff changing MG's RSU must be handled fast and stably. However, it has a physical limits to remove a disconnection time of handoff process by reason of its technological features. In this paper, we suggest a MIMG(Multi-Interface Mobile Gateway) executing seamless handoff by using multiple wireless LAN interfaces for connecting RSU. In the detailed way to do stable handoff, we suggest the "Link Sharing Technique" to disconnection time of packet transmission for RSU to MIMG and the "Path Sharing Technique" to remove disconnection time of packet transmission for MIMG to RSU. we implemented the MIMG which performs the suggested handoff technique. We confirmed the superiority of our system by remove of the disconnection time(0 ms), and improved over 50 % of the communication bandwidth.

Secure and Efficient V2V Message Authentication Scheme in Dense Vehicular Communication Networks (차량 밀집환경에서 안전하고 효율적인 V2V 메시지 인증기법)

  • Jung, Seock-Jae;Yoo, Young-Jun;Paik, Jung-Ha;Lee, Dong-Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.20 no.4
    • /
    • pp.41-52
    • /
    • 2010
  • Message authentication is an essential security element in vehicular ad-hoc network(VANET). For a secure message authentication, integrity, availability, privacy preserving skill, and also efficiency in various environment should be provided. RAISE scheme has been proposed to provide efficient message authentication in the environment crowded with lots of vehicles and generally considered to be hard to provide efficiency. However, as the number of vehicles communicating in the area increases, the overhead is also incurred in proportion to the number of vehicles so that it still needs to be reduced, and the scheme is vulnerable to some attacks. In this paper, to make up for the vulnerabilities in dense vehicular communication network, we propose a more secure and efficient scheme using a process that RSU(Road Side Unit) transmits the messages of neighbor vehicles at once with Bloom Filter, and timestamp to protect against replay attack. Moreover, by adding a handover function to the scheme, we simplify the authentication process as omitting the unnecessary key-exchange process when a vehicle moves to other area. And we confirm the safety and efficiency of the scheme by simulating the false positive probability and calculating the traffic.

The Design and Implementation of a Multi-Session Processing Between RMA and RCP within a Vehicle Tracking System (차량 추적 시스템에서 RMA와 RCP 사이의 다중세션 설계 및 구현)

  • Jang, Chung Ryong;Lee, Yong Kwon;Lee, Dae Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.3
    • /
    • pp.127-141
    • /
    • 2014
  • A Vehicle Tracking System consists of GPS tracking device which fits into the vehicle and captures the GPS location information at regular intervals to a central GIS server, and GIS tracking server providing three major responsibilities: receiving data from the GPS tracking unit, securely storing it, and serving this information on demand of the user. GPS based tracking systems supporting a multi-session processing among RMA, RM, and RCP can make a quick response to various services including other vehicle information between RSU and OBU on demand of the user. In this paper we design RSU lower layers and RCP applications in OBU for a multisession processing simulation and test message processing transactions among RMA-RM and RM-RCP. Furthermore, we implement the additional functions of handling access commands simultaneously on multiple service resources which are appropriate for the experimental testing conditions. In order to make a multi-session processing test, it reads 30 resource data,0002/0001 ~ 0002/0030, in total and then occurs 30 session data transmissions simultaneously. We insert a sequence number field into a special header of dummy data as a corresponding response to check that the messages are received correctly. Thus, we find that GIS service system with a multi-session processing is able to provide additional 30 services in a same speed of screen presentation loading while identifying the number of session processing of Web GIS service, the number of OBU service, and the speed of screen presentation loading by comparing a single session and a multi-session of GIS service system.

Data Transmission Performance Study of Wireless Channels over CCN-based VANETs (CCN 기반의 VANET에서 무선 채널에 따른 전송 성능에 관한 연구)

  • Kang, Seung-Seok
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.4
    • /
    • pp.367-373
    • /
    • 2022
  • VANET (Vehicular Ad hoc NETwork) is one of the special cases of the ad hoc networks in which car nodes communicate with each other and/or with RSUs (Road Side Unit) in order for the drivers to receive nearby road traffic information as well as for the passengers to retrieve nearby gas price or hotel information. In case of constructing VANET over CCN, users do not need to specify a destination server address rather to input a key word such as nearby congestion in order to gather surrounding traffic congestion information. Furthermore, each car node caches its retrieved data for forwarding other nodes when requested. In addition, the data transmission is inherently multicast, which implies fast data propagation to the participating car nodes. This paper measures and evaluates the data transmission performance of the VCCN (VANET over CCN) in which nodes are equipped with diverse wireless communication channels. The simulation result indicates that 802.11a shows the best performance of the data transmission against other wireless channels. Moreover, it indicates that VCCN improves overall data transmission and provides benefit to the nodes that request the same traffic information by exploiting inherent multicast communication.

Performance Evaluation of Transmitting Brainwave Signals for Driver's Safety in Urban Area Vehicular Ad-Hoc Network (운전자의 안전을 위한 도심지역 자동차 애드혹 통신망의 뇌파전송 성능평가)

  • Jo, Jun-Mo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.26-32
    • /
    • 2011
  • Recently, in the U-health area, there are research related on monitoring brainwaves in real-time for coping with emergent situations like the fatigue driving, cerebral infarction or the heart attack of not only the patients but also the normal elderly folks by transmitting of the EEG(Electroencephalograph). This system could be applied to hospitals or sanatoriums. In this paper, it is applied for the vehicular ad-hoc network to prevent the car accident in advance by monitoring the brainwaves of a driver in real-time. In order to do this, I used mobile ad-hoc nodes supported in the Opnet simulator for the efficient EEG brainwave transmission in the VANET environment. The vehicular ad-hoc networks transmitting the brainwaves to the nearest road-side unit are designed and simulated to draw an efficient and proper vehicular ad-hoc network environment.