• Title/Summary/Keyword: river water purification

Search Result 92, Processing Time 0.025 seconds

Study on Natural Purification in the Midstream of Nakdong River (낙동강 중류부의 자정능력에 대한 연구 -용존산소를 중심으로-)

  • 이홍근;한진석
    • Water for future
    • /
    • v.17 no.2
    • /
    • pp.85-97
    • /
    • 1984
  • Measuring the river flow and water quality in the midstream of the Nakdong River, the natural purification status in examined through the analyses of the elements which affect the variation of dissolved oxygen, and DO model is evaluated to the midstream reach of the river. The major results of this study are as follows; the pruification factor of the of the river is relatively high, it is worried over eutrophication considering much production of algae, and it is evaluated that important factor affecting the DO value computed by the proposed DO model are in order of reaeration coefficient, carbonaceous BOD and deoxygenation constant.

  • PDF

Preliminary Experiment of Gravel Contact Oxidation Process in the Tropics

  • Abdullah Keizrul bin;Omachi Toshikatsu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.12-17
    • /
    • 2006
  • Natural rivers have water purification functions called Gravel Contact Oxidation Process, which decontaminate river water by biological absorption, oxidation and degradation on riverbed gravels. This function has been developed and applied to many small/medium-sized urban rivers in Japan as one of the direct river water purification methods. However the method hasn't been verified in the tropics, which have different climate conditions and river characteristics. A preliminary experiment carried out at a polluted urban tributary in the outskirts of Kuala Lumpur, Malaysia where an increasing attention has been paid to river environment, showed a good applicability to the tropical conditions as a technically practical water purification measure with some maintenance cares for sludge management.

  • PDF

A Study on the Water Pollution Characteristics of the Taewha River - Chemical Oxygen Demand and Chloride ion Concentration - (태화강의 수질오염 특성에 관한 연구 - 화학적 산소요구량과 염소이온 농도 -)

  • 류석환
    • Journal of Environmental Science International
    • /
    • v.2 no.4
    • /
    • pp.291-297
    • /
    • 1993
  • The COD values and chloride ion concentrations of the Taewha river flowing through Ulsan area were determined along the main stream and the relationships between CODs and chloride ion concentrations were described. The results showed that the middle-upper stream and downstream of the Taewha river were polluted deeply with municipal sewage and self-purification occured in the middle-downstream of the river. When domestic sewage is a main source of pollutants, and is especially the only source of chloride in the stream water, the ratio of COD/[$\textrm{Cl}^{-}$] will be utilizable as a measure of self-purification of the stream.

  • PDF

Characteristics of soil and eco-friendly media for improving the filterability and water quality in soil filtration (하천수질정화용 토양여과의 여과용량 증대와 수질 개선을 위한 친환경 여재 특성 비교)

  • Ki, Dong-Won;Cho, Kang-Woo;Won, Se-Yoen;Song, Kyung-Guen;Ahn, Kyu-Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.4
    • /
    • pp.453-462
    • /
    • 2010
  • Nowadays, the challenges of ensuring good water quality and quantity of river are becoming more important for human society, but there has been troublesome for purifying river water. In this study, we performed the fundamental study of a river water treatment system using riverside soil and eco-friendly optimal media for improving river water quality and can also treat a large amount of river water. As the results of the physical and chemical characterization of the two different soils (Kyungan and Chungrang, The Republic of Korea), which were collected from real stream sides in the Han River basin, and five kinds of media (zeolite, perlite, steel slag, woodchip and mulch), both soils were all classified as a sand, and effective size ($D_{10}$) and uniformity coefficient (U) of the soil were about 0.2 mm and 4 or so, respectively. Through the batch and column experiments with the soil and eco-friendly media, zeolite and mulch were found to be efficient for decreasing nitrogen. In addition, steel slag was especially superior to the other media for phosphorus removal. From soil reforming tests volume ratios were 2.8, 1, and 1 of Kyungan soil, zeolite, and steel slag hydraulic conductivity of mixed soil was increased $1.30{\times}10^{-2}$ from $2.85{\times}10^{-3}$ of Kyungan soil, and the removal efficiencies of nitrogen and phosphorus were also improved. These results show that reforming of the soil enhanced the purification of a large amount of water, and zeolite, mulch, and steel slag might be facilitated as proper functional media.

Assessment of Water Purification Plant Vegetation for Enhancement of Natural Purification in Mankyeong River (만경강 본류의 자연정화능 향상을 위한 식생학적 진단)

  • Lee, Kyeong-Bo;Kim, Chang-Hwan;Kim, Jong-Gu;Lee, Deog-Bae;Park, Chan-Won;Na, Seoung-Yong
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.2
    • /
    • pp.153-165
    • /
    • 2003
  • This study was conducted to get some information on plants abilities to enhance water purification and to find out away to conserve the ecosystem in Mankyeong river. Vegetation were surveyed at 4 sites pointing by 1:5,000 topographical map, from June 2001 through March 2002. T-N content in water were high in all sites of Mankyeong river, the average T-N levels were 8.59 and 17.23 mg/L, summer and winter, respectively. The average T-P level during summer was 0.47 mg/L but that was 1.79 mg/L during winter. The BOD level in Mankyeong upstream ranged from 0.95 to 2.57 mg/L which would be in I or II grade according to water quality criteria by Ministry of Environment but BOD level in Mankyeong downstream ranged from 6.87 to 9.72 mg/L. The plant species of river flora were found 251, 98 and 85, upstream midstream and down stream, respectively. Among the surveyed plants, Ceratophyllum demersum, submerged plant and Nuphar subinteperrimum took up higher contents of phosphate and nitrogen than other piano. The Phragmites communis and Zizania latifolia having much biomass were thought to be suitable plants for enhancement of e natural water purification.

Dynamics of Attached Microbial Community on the River with Gravel Riverbed (자갈하상 하천에서 부착미생물군집의 거동)

  • Park, Jae-Young;Choi, I-Song;Oh, Jong-Min
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.3 s.152
    • /
    • pp.235-244
    • /
    • 2005
  • This study was carried out in Osan river to quantitatively investigate behavior of attacked microbial community (AMC) for enhancing self-purification process of river. We gained the results such as follows throughout long-term monitoring at in-situ river. The biomass of AMC had higher in the riffle than the almost stagnant pool and they were more developed in the riffle with high current velocity (HCV). Although the fast flowing current affects negatively to growth of the AMC during the early phase when the community gets attached to the benthic substrate, it was observed that it affected positively to their growth during the intermediate and later phase after the community is adapted to the substrate. When turbulence due to external pressure (storm or discharge of dam and reservoir) occurs, the degree of separation depends upon the flowing strength and the type of the external pressure. Since the community is not all separated, recovery is rather fast. Therefore, this study found that the degree of reduction of the pollutant by self-purification of the stream is depended upon the riverbed shape and the AMC contributes to self-purification positively or negatively in river. Therefore, the riverbed shape must be constructed in accordance with the characteristics of water quality in stream. Furthermore, the technique of installing the water channel structure appropriate for each section must be developed to maximize self-purification ability.

Re-development of Waterway system in Nihombashi River

  • Ito, Kazumasa
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.2190-2199
    • /
    • 2009
  • Nihombashi is located in the central area of Tokyo, Japan. Tokyo has been the capital in Japan since the Edo period, which started approximately 400 years ago, and has accepted a variety of cultures, human resources, businesses for the last 400 years. This has resulted in building up the present prosperity. The Sumida River, one of the symbols of Tokyo and its tributaries including the Kanda River and the Nihombashi River, flows through the Nihombashi district. The river and tributaries used to benefit to the City of Edo. Due to the economic development and the industrial growth in Tokyo, however, they were polluted and lost their functions. In 1960s, approximately 40 years ago, the Sumida River became so dirty that local citizens kept away from it. The Nihombashi River was covered with an expressway, which was obscuring the river view. Since 1970s, local communities have proposed to rehabilitate rivers in Tokyo successively, and have proceeded with measures for river floods, improvement of sewage systems and construction of water purification facilities. Consequently, the quality of the river water was considerably improved in 1990. The stagnant rivers were turned into ones that local citizens were physically able to come close by. Today, restoring of the environment and the appearance of the city in the old days, Nihombashi district has been proposed as a model city of the future, which is alive with history and culture and harmonizing with rivers. The concept is "To Create, To Reserve, To Restore." This paper introduces a case study of the urban development, in which the local communities and public authorities collaborated with and proposed a brand-new style of the urban city harmonizing with the environment.

  • PDF