• Title/Summary/Keyword: river management flow

Search Result 421, Processing Time 0.023 seconds

Status of Water Infrastructure and Future Tasks in Jeollabuk-do Province(Focussed on the Mangyeong River and Dongjin River) (전라북도 물이용 체계 및 과제(만경강과 동진강 중심으로))

  • Kim, Boguk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.36 no.5
    • /
    • pp.289-296
    • /
    • 2022
  • Mangyeong River and Dongjin River are highly dependent on external regions for domestic and agricultural water, and the agricultural water supply and use system of those rivers are very complicated. For smooth water supply, rivers are used as a supply system. Of the total river water use permits (as of 2019), agricultural water accounts for 97.5%, 80.4% in Mangyeong River and Dongjin River, respectively. The excessive intake of river water as agricultural purpose is causing the stream to dry out and to deteriorate the ecological health of the river. It is necessary to minimize the water use system that takes in and utilizes river water. In both rivers, the flow rate of agricultural drainage and the load of major water quality items that flowing into the main stream are similar to or higher than those of the major tributaries, indicating that management is necessary to improve the water quality of the river. It is necessary to understand the effect of agricultural drainage on river water quality by establishing a continuous monitoring system for the form of agricultural drainage.

Numerical experiment on driftwood dynamics considering rootwad effect and wood collision

  • Kang, Taeun;Kimura, Ichiro;Onda, Shinichiro
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.267-267
    • /
    • 2019
  • Driftwood is one of serious problems in a river environment. In several countries, such as Indonesia, Japan, and Italy, the driftwood frequently appears in a river basin, and it can alter the channel bed, flow configuration by wood deposition and jam formation. Therefore, the studies related to driftwood have been actively conducted by many researchers to understand the mechanism of driftwood dynamics. In particular, wood motion by collision is one of the difficult issues in the numerical simulation because the calculation for wood collision requires significantly expensive calculation time due to small time step. Thus, this study conducted the numerical simulation in consideration of the wood motion by water flow and wood collision to understand the wood dynamics in terms of computation. We used the 2D (two-dimensional) depth-averaged velocity model, Nays2DH, which is a Eulerian model to calculate the water flow on the generalized coordinate. A Lagrangian type driftwood model, which expresses the driftwood as connected sphere shape particles, was employed to Nays2DH. In addition, the present study considered root wad effect by using larger diameter for a particle at a head of driftwood. An anisotropic bed friction was considered for the sliding motion dependent on stemwise, streamwise and motion directions. We particularly considered changeable draft at each particle and projection area by an angle between stemwise and flow directions to precisely reproduce the wood motions. The simulation results were compared with experimental results to verify the model. As a result, the simulation results showed good agreement with experimental results. Through this study, it would be expected that this model is a useful tool to predict the driftwood effect in the river flow.

  • PDF

Current Status of Refractory Dissolved Organic Carbon in the Nakdong River Basin (낙동강유역 난분해성 용존 유기탄소 배출 현황 분석)

  • Lee, Jeonghoon;Kim, Jungsun;Lee, Jae Kwan;Kang, Limseok;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.538-550
    • /
    • 2012
  • This study suggests a general methodology which is designed for assessing RDOC behavior at the catchment scale by coupling properly a series of steam flow and water quality simulation models and actual monitoring data set. The modified TANK model in which a river routing function is incorporated to the conventional one is applied to simulate the long-term daily stream flow data, and the simulated stream flow data is combined with the 7-parameter log-linear model coupled to the minimum variance unbiased estimator to simulate the long-term daily water quality (BOD, COD and TOC) loads. Finally, the regression analysis between the usually monitored water quality data (BOD, COD and TOC) and RDOC is combined with the simulated water quality data to manifest the spatio-temporal variability of RDOC flux behavior at the Korean TMDL catchment scale.

An Analysis of Changing River Sections Using GIS Spatial Analysis - Nonsan River - (공간분석기법을 이용한 하천단면 변화분석 - 논산천을 대상으로 -)

  • Lee, Jae-Yil;Lee, Gyu-Sung;Ha, Sung-Ryong
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.1
    • /
    • pp.91-97
    • /
    • 2010
  • The systematic data management system in the area of river flow analysis has not yet constructed, even though the need is evident due to the complicated process of tremendous input/output data in the modeling study and the importance of visualization of spatial flow variation. The objectives of this study are to suggest the method for analysis of changing river sections affecting ecological habitat characteristics. The effects of ecological habitat characteristics are assessed with respect to changing river sections. A GIS special analysis is created representing in the past section of Nonsan-river using historical data. Topographic surfaces are subject to erosional and depositional forces that a specific set of surface characteristics unique to elevation data. GIS spatial analyst is used to generate surface grids from historical point data. Using the GIS spatial analyst can be constructed sections for anywhere of river. The change of depth between 1979 and 1988, the left bank elevations of a river are increased about 1.5m. But the right bank elevations of a river are decreased about 2.3m caused by erosion. In addition, the change of spatial between 1988 and 2002, the regions of a river from upper stream to midstream are decreased the elevation. But the downstream regions are increased the elevation. These changes are analyzed in GIS program to assess methods for affecting ecological habitat.

Impact Analysis of Tributaries and Simulation of Water Pollution Accident Scenarios in the Water Source Section of Han River Using 3-D Hydrodynamic Model (3차원 수리모델을 이용한 한강 상수원구간 지류영향 분석 및 수질오염사고 시나리오 모의)

  • Kim, Eunjung;Park, Changmin;Na, Mijeong;Park, Hyeon;Kim, Bogsoon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.4
    • /
    • pp.363-374
    • /
    • 2018
  • The Han River serves as an important water resource for the city of Seoul, Korea and in the neighboring metropolitan areas. From the Paldang dam to the Jamsil submerged weir, the 4 water intake stations that are located for the Seoul metropolitan population were under review in this study. Therefore the water quality management in this section is very important to monitor, analyze and review to rule out any safety concerns. In this study, a 3-D hydrodynamic model, EFDC (Environmental Fluid Dynamics Code), was applied to the downstream of the Paldang Dam in the Han River, which is about 23 km in length, to determine issues related to water resource management. The 3-D grid was composed of 2,168 horizontal grids and three vertical layers. In this case, the hydrodynamic model was calibrated and verified with an observed average daily water surface elevation, water temperature and flow rate data for 3 years (2013~2015). The developed EFDC model proved to reproduce the hydrodynamics of the Han River well. The composition ratios of the noted incoming flows at the monitored intake stations for 3 years and their flow patterns in the river were analyzed using the validated model. It was found that the flow of the Wangsuk Stream depended on the Paldnag dam discharge, and it was noted that the composition ratios of the stream at the intake stations changed accordingly. In a word, the Wangsuk Stream moved mainly along the right bank of the Han River under the condition of a normal dam flow. As can be seen, when the dam discharge rate was low, the incidence of lateral mixing was often seen. The scenario analyses were also conducted to predict the transport of conservative pollutants as in the case of a chemical spill accident. Generally speaking, when scenarios were applied, the arrival time and concentration of pollutants at each intake station was thus predicted.

Study on the Fluctuation System of River Level Using GIS Data (GIS자료를 이용한 하천수위 예측시스템 구축)

  • Kang Sang-Hyeok;Choi Jong-In
    • Spatial Information Research
    • /
    • v.12 no.3
    • /
    • pp.229-237
    • /
    • 2004
  • Debris flow in the mountainous river gives rise to serious environmental and flooding problems. According to flood white book of Kangwon-do in 2002, over 30% of total of flooding victims are attributable to debris flow. But it has been neglected to build countermeasure to minimize victims due to lack of collected data and knowledge in field of the sediment yield of mountainous river. The study calculated hydraulic and hydrological fluctuation for rainfall condition using GIS data, after all we estimated the water surface of flood caused by bed fluctuation. These efforts will of for effective information for planning of river management.

  • PDF

Impact of a Flushing Discharge from an Upstream Dam on the NH3-N Concentrations during Winter Season in Geum River (상류 댐 플러싱 방류가 금강의 겨울철 암모니아성 질소 농도 저감에 미치는 효과분석)

  • Chung, Se Woong;Kim, Yu-kyung
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.609-616
    • /
    • 2005
  • A high ammonia nitrogen ($NH_3-N$) concentration has been recursively observed every winter season in Geum River, which hindered chemical treatment processes at a water treatment plant. A flushing discharge from Daecheong Dam was often considered to dilute $NH_3-N$, but information on the quantitative effect of flushing on the downstream water quality was limited. In this study, the impact of a short-term reservoir flushing on the downstream water quality was investigated through field experiments and unsteady water quality modeling. On November 22, 2003, the reservoir discharge was increased from $30m^3/sec$ to $200m^3/sec$ within 6 hours for the purpose of the experiment. The results showed that flushing flow tends to reduce downstream $NH_3-N$ concentrations considerably, but the effectiveness was limited by flushing amount and time. An unsteady river water quality model was applied to simulate the changes of nitrogen concentrations in response to reservoir flushing. The model showed very good performance in predicting the travel time of flushing flow and the effect of flushing discharge on the reduction of downstream $NH_3-N$ concentrations at Maepo and Geumnam site, but a significant discrepancy was observed at Gongju site.

Eco-river Restoration and River Management in Response to Climate Change (기후변화를 고려한 생태하천 복원 및 관리방향에 관한 연구)

  • Kang, Hyeongsik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.155-165
    • /
    • 2014
  • In this study, using a complex of physical, chemical, and biological evaluation factors, the ecological vulnerability to climate change were evaluated at each river in the Nakdong river basin. First, runoff, sediment rate, and low flow discharge changes according to AIB climate change scenario using the SWAT model were simulated. Also, for the assessment of chemical and biological factors, 48 points that water quality monitoring sites and ecological health measurement points are matched with each other was selected. The water quality data of BOD and T-P and the biological data of IBI and KSI in each point were reflected in the assessment. Also, the future rise in water temperature of the rivers in Nakdong river basin was predicted, and the impact of water temperature rise on the fish habitat was evaluated. The top 10 most vulnerable points was presented through a summary of each evaluation factor. This study has a contribution to river restoration or management plan according to the characteristics of each river.

Statistical Analysis of Water Flow and Water Quality Data in the Imjin River Basin for Total Pollutant Load Management (임진강 유역 오염물질 총량관리를 위한 유량-수질 자료의 통계분석)

  • Cho, Yong-Chul;Choi, Hyeon-Mi;Lee, Young Joon;Ryu, Ingu;Lee, Myung-Gu;Gu, Donghoi;Choi, Kyungwan;Yu, Soonju
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.4
    • /
    • pp.353-366
    • /
    • 2018
  • The purpose of this study was assessment the quality of water by using the statistical analysis technique of the Water flow and water quality from January 2012 to December 2016 at the unit basin for total pollutant load management system (TPLMS) in the Imjin River. Water flow and water quality were monitored at an average of 8 day intervals, 11 parameters were used for correlation analysis, principal component analysis (PCA), factor analysis (FA), and cluster analysis (CA). The Hierarchical CA was classified into three according to the change of space, such as natural rivers, urban rivers, point with large influence of point pollution source, it was found that the type of contamination source the similarity of water quality affected the classification of cluster. Using one-way analysis of variance (ANOVA) and post-hoc Analysis, there were statistically significant differences between mean values among the clusters. Correlation analysis showed the correlation coefficient between $COD_{Mn}$ and TOC was 0.951 (p<0.01) and the correlation was statistically significantly higher. According to the result PCA and FA, 3 principal components can explaining 72% of the total variations in water quality characteristics and main factor was EC, $BOD_5$, $COD_{Mn}$, TN, TP and TOC indirect indicators of organic matter and nutrients were influenced. This study presented the regression equation obtained by applying the factor scores to the multiple linear regression analysis and concluded that the management Indirect indicators of organic matter and nutrients is important for water quality management in the Imjin River basin.

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.