• Title/Summary/Keyword: river junction

Search Result 53, Processing Time 0.031 seconds

Analysis of Unintended Lake Formation Problem and Its Environmental Effects a Case Study

  • Bushira, Kedir Mohammed;Kasaya, Alemayehu
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.217-224
    • /
    • 2020
  • Waterlogging and unintended lake formation become the main problem in some parts of the world. Starting from 1989, the waterlogging problem was observed in the farmland of the Jarso community of Konso Woreda adjacent to the Segen River in Ethiopia. Therefore, the objectives are determining the extent and causes of unintended lake formation using GIS/RS in addition to a preliminary field survey to mitigate the problem. The analysis of satellite images revealed that over the years invasion of the irrigable land by unwanted water had increased, as, in 1989, the size of the wetland area was about 8 Km2; in 2000 the size of the un-intended lake was only 8.23 ㎢. Alarmingly the size of the lake increased to 19.68 Km2 in 2014. Silting up of Weir and changing the flow of River Segen and Human Intervention and changing the natural flow of River Yanda were the main causes of this unwanted prolonged water-logging. The ecological and social environment has been degrading as the people of the waterlogged area have been experiencing some settlement and losing their land. Another problem encountered was flooding from River Barka and invasion of the farmland. Sediment control best management practices (BMPs) i.e, Removal of sediment, providing sandbags and well-scheduled maintenance; Changing the junction point of Yanda and Segen River were suggested for the long-term and short term possible remedial measures. Gabion retaining wall on the bank of the Segen River to the face of Barka River was suggested to protect the farmland from flooding.

The Effects of DEM Resolution on Hydrological Simulation in BASINS-HSPF Modeling

  • Jeon, Ji-Hong;Yoon, Chun-Gyung
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.453-456
    • /
    • 2002
  • In this study, the effect of DEM resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using BASINS (Better Assessment Science Integrating point and Nonpoint Source) for Heukcheon watershed (303.3km2) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might effects on the simulation of water quantity and quality. The area weighted average watershed slope became lower but the length weighted average channel slope became higher as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation DEM mesh size of 100m is recommended for this watershed.

  • PDF

Possibility of Inland Navigation Downstream of the Singok Weir in the Han River (한강 신곡수중보 하류 하구부에서의 선박 통행 가능성)

  • Won, Kim;Chaewoong, Ban;Myounghwan, Kim;Doohan, Lee
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • This study analyzed the possibility of inland navigation in the Han river mouth, from Singok weir to the junction of Gongleung Stream. As a result of analysis using recent survey data and water level data, it was found that the number of days that a 250 - 400 ton class vessel can operate in the Han river estuary is less than 119 days per year. In the case of a 400 - 1,500 ton class vessel, it was found that only about 47 days per year can be operated. In this region, even in the absence of large-scale floods, the river bed continues to change significantly due to strong tides, indicating that there are limitations in securing a stable waterway. Therefore, for stable inland navigation, it is judged that continuous investigation and analysis of the possibility and stability of waterways are necessary.

ASSESSMENT AND CONTROL OF TOTAL NUTRIENT LOADS IN WATERSHED AND STREAM NETWORK IN SOUTH-WEST TEXAS

  • Lee, Ju-Young;Choi, Jae-Young
    • Water Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Recently, the population growth and agricultural development are rapidly undergoing in the South-West Texas. The junction of three river basins such as Lavaca river basin, Colorado-Lavaca Coastal basin and Lavaca-Guadalupe Coastal basin, are interesting for non-point and point source pollutant modeling: Especially, the 2 basins are an intensively agricultural region (Colorado-Lavaca Coastal/Lavaca-Guadalupe Coastal basins) and several cities are rapidly extended. In case of the Lavaca river basin, there are many range land. Several habitat types wide-spread over three relatively larger basins and five wastewater discharge regions are located in there. There are different hazardous substances which have been released. Total nutrient loads are composed of land surface load and river load as Non-point source and discharge from wastewater facilities as point source. In 3 basins region, where point and non-point sources of poll Jtion may be a big concern, because increasing fertilizers and pesticides use and population cause. This project objective seeks to how to assess and control the accumulation of non-point and point source and discuss the main impacts of agriculture and environmental concern as non-point source with water quality related to pesticides, fertilizer, and nutrients and as point source with wasterwater discharge from cities. The GIS technique has been developed to aid in the point and non-point source analysis of impacts to natural resource within watershed. This project shows the losses in $kg/km^2/year$ of BOD (Biological Oxygen Demand), TN (Total Nitrogen) and TP (Total Phosphorus) in the runoff from the surface of 3 basins. In the next paper, sediment contamination will show how to evaluate in Estuarine habitats of these downstream.

  • PDF

A Study on Estimation of Levee Safety Map for Determining the Priority of River Maintenance (하천 유지관리 우선순위 결정을 위한 제방안전도맵 산정방법 연구)

  • Yoon, Kwang Seok;Kim, Sooyoung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.17-25
    • /
    • 2017
  • Owing to recent climate change, the scale of rainfall tends to increase gradually and the risk of flooding has increased. Therefore, the importance of improving the levee management and disaster response is increasing. Levee management in Korea is carried out at the level of damage recovery after the occurrence of damage. Therefore, it is necessary to develop a technology for predicting and managing the levee safety with proactive river management. In this study, a method to estimate the safety against erosion and overflow was suggested. A map of levee safety that can be used as basic data is presented by displaying the levee safety on the map. The levee erosion safety was calculated as the ratio of the internal and external force for each shore type. The levee overflow safety was calculated as the ratio of the maximum conveyance and design flood. The maximum conveyance was a discharge when the level of the river was equal to the level of the levee crown. The levee safety was classified into 5 grades: very safe, safe, normal, dangerous, and very dangerous. As a research area from downstream of Nam River Dam to Nakdong River Junction, the levee safety against erosion and overflow was estimated for all levees and all cross-sections of the river. The levee safety was displayed on a map using GIS. Through the levee safety map as a result of this study, the levee safety can be observed intuitively. Using the levee safety map, a maintenance plan for a river can be easy to build. This levee safety map can be used to help determine the priority of investment for efficient budget used.

Two-dimensional Spatial Distribution Analysis Using Water Quality Measurement Results at River Junctions (하천 합류부에서의 수질계측결과를 활용한 2차원 공간분포 해석)

  • Lee, Chang Hyun;Park, Jae Gon;Kim, Kyung Dong;Ryu, Si Wan;Kim, Dong Su;Kim, Young Do
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.3
    • /
    • pp.343-350
    • /
    • 2022
  • High-resolution data are needed to understand water body mixing patterns at river junctions. In particular, in river analysis, hydrological and water quality characteristics are used as basic data for aquatic ecological health, so observation through continuous monitoring is necessary. In addition, since measurement is carried out through a one-dimensional and fixed measurement method in existing monitoring systems, a hydrological and water quality characteristics investigation of an entire river, except for in the immediate vicinity of the measurement point, is not undertaken. In order to obtain high-resolution measurement data, a measurer has to consider multiple factors, and the area or time that can be measured is limited. Although the resolution might be lowered, an appropriate interpolation method must be selected in order to acquire a wide range of data. Therefore, in this study, a high-elevation measurement method at a river junction was introduced, and the interpolation method according to the measurement results was compared. The overall hydraulic and water quality information of the river was indicated through the visualization of the prediction and interpolation method in the low-resolution measurement result. By comparing each interpolation method, Inverse Distance Weighting, Natural Neighbor, and Kriging techniques were applied in river mapping to improve the precision of river mapping through visualized data and quantitative evaluation. It is thought that this study will offer a new method for measuring rivers through spatial interpolation.

Drying Stream and Hydrological Environment for Gwangjucheon (광주천의 건천화와 수문환경문제)

  • Yang, Hea-Kun
    • Journal of the Korean association of regional geographers
    • /
    • v.10 no.3
    • /
    • pp.568-578
    • /
    • 2004
  • This study is aimed at investigating floodgate characteristics and environmental issues in Gwangjucheon and examining possible problems of expanding river maintenance water being carried on in the context of river recovery works. In general, the obtained results show the following. The treatment water provisioned in the restoration project of the drying stream going through the water circulation device can pollute the land and groundwater in the Gwangjucheon Basin. Besides, although about $17,565m^3$/day of water is available in the upper ground, most of it go to the junction and exhausting directly to the waste water treatment or going into the groundwater. Because of the drying stream, the amount of water going to the ground is increased. Therefore, efficient land use along with regulations to protect cultivated land and ensure recovery works of city stream through the recovery of water circulation by constructing and expanding a special drainage system are of vital importance.

  • PDF

Analysis of Water-quality Improvement Efficiency of Constructed Wetland Using NPS-WET Model (NPS-WET 모형을 이용한 인공습지의 수질정화효과 분석)

  • Rhee, Han-Pil;Jung, Kwang-Wook;Lee, Bok-Soo;Ham, Jong-Hwa;Son, Yeong-Kwon
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.2
    • /
    • pp.320-331
    • /
    • 2012
  • A combination system of catch canal and constructed wetland was designed and suggested to improve water quality in gagricultural region of lower Dong-jin river basin. In order to evaluate an water quality improvement efficiency of the designed combination system, the NPS-WET model was applied in this study. Simulation result of the NPS-WET shown that the nutrient load removal rate of constructed wetland was BOD, T-N, T-P and SS was 30.7~39.0%, 46~60%, 40.7~57.0% and 68.2~74.7%, respectively. Nutrients reduction of constructed wetland was higher in growing season than winter season because vital activity of microorganism, macrophyte and algae was augmented with high air and water temperature. Effluents from constructed wetland can affect water-quality of catch canal drains, especially, water-quality on junction point to Dong-jin river. Water-quality improvement in low-flowed catch canal (Un-san) was more significant than in high-flowed catch canal (Won-pyeong). In conclusion, a feasible design of constructed wetland is necessary to treat large quantity of receiving water. The NPS-WET is useful tool for assessing water-quality improvement efficiency using constructed wetland.

Effects of DEM Resolution on Hydrological Simulation in, BASINS-BSPF Modeling

  • Jeon, Ji-Hong;Ham, Jong-Hwa;Chun G. Yoon;Kim, Seong-Joon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.7
    • /
    • pp.25-35
    • /
    • 2002
  • In this study, the effect of DEM (Digital Elevation Model) resolution (15m, 30m, 50m, 70m, 100m, 200m, 300m) on the hydrological simulation was examined using the BASINS (Better Assessment Science Integrating point and Nonpoint Source) for the Heukcheon watershed (303.3 ㎢) data from 1998 to 1999. Generally, as the cell size of DEM increased, topographical changes were observed as the original range of elevation decreased. The processing time of watershed delineation and river network needed more time and effort on smaller cell size of DEM. The larger DEM demonstrated had some errors in the junction of river network which might affect on the simulation of water quantity and quality. The area weighted average watershed slope became milder but the length weighted average channel slope became steeper as the DEM size increased. DEM resolution affected substantially on the topographical parameter but less on the hydrological simulation. Considering processing time and accuracy on hydrological simulation, DEM grid size of 100m is recommended for this range of watershed size.

Identification of Red Tide-causing Organism and Characteristics of Red Tide Occurrence in the Oncheon Down Stream, Busan (온천천 하류 적조 원인생물의 동정 및 발생 특성)

  • Kim, Mi-hee;Ji, Hwa-seong;Cho, Jeong-goo;Cho, Sunja
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.285-292
    • /
    • 2018
  • This study was performed in order to identify the red tide-causing organism and to understand the characteristics of the water quality during the winter of 2015 and 2016 in the Oncheon stream, a tidal river in Busan, where red tide often occurs in the wintertime. Two sites were selected on the stream and the surface water was sampled a total of 28 times during the experimental period. Twelve water quality characteristics, including water temperature, pH, DO, COD, total-N (T-N), total-P (T-P), and salinity were analyzed in order to test water quality. The cell numbers of cryptomonads were counted directly by microscopic observation. The nucleotide sequences of the partial 28S rRNA gene and psbA gene from metagenomic DNA, derived from each sampling site, were analyzed. According to the results, the alga most responsible for the bloom was identified as Teleaulax OC1 sp., which belongs to the cryptomonads. Three items of chl-a, pH, and DO were positively correlated with the cell numbers of the cryptomonads counted at the upper stream of the tidal area (St 1) while eight items of chl-a, TOC, BOD, total-N, COD, SS, pH, and DO were positively correlated with the cells located at the junction between the stream and Su-young river (St 2) in the order.