• Title/Summary/Keyword: river hydrology

검색결과 141건 처리시간 0.029초

Climate changes impact on water resourcesinYellowRiverBasin,China

  • Zhu, Yongnan;Lin, Zhaohui;Wang, Jianhua;Zhao, Yong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.203-203
    • /
    • 2016
  • The linkage between climate change and water security, i.e., the response of water resource to the future climate change, have been of great concern to both scientific community and policy makers. In this study, the impact of future climate on water resources in Yellow River Basin in North of China has been investigated using the Coupled Land surface and Hydrology Model System (CLHMS) and IPCC AR5 projected future climate change in the basin. Firstly, the performances of 14 IPCC AR5 models in reproducing the observed precipitation and temperature in China, especially in North of China, have been evaluated, and it's suggested most climate models do show systematic bias compared with the observation, however, CNRM-CM5、HadCM5 and IPSL-CM5 model are generally the best models among those 14 models. Taking the daily projection results from the CNRM-CM5, along with the bias-correction technique, the response of water resources in Yellow river basin to the future climate change in different emission scenarios have been investigated. All the simulation results indicate a reduction in water resources. The current situation of water shortage since 1980s will keep continue, the water resources reduction varies between 28 and 23% for RCP 2.6 and 4.5 scenarios. RCP 8.5 scenario simulation shows a decrease of water resources in the early and mid 21th century, but after 2080, with the increase of rainfall, the extreme flood events tends to increase.

  • PDF

Estimation of River discharge using Very High-Resolution Satellite Data in Yangtze River

  • Zhang, Jiqun;Xu, Kaiqin;Watanabe, Masataka;Sun, Chunpeng
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2002년도 Proceedings of International Symposium on Remote Sensing
    • /
    • pp.728-733
    • /
    • 2002
  • The measurement of river discharge is among the most fundamental observations and is necessary for understanding many water-related issues, such as flooding hazards, sediment transportation, and nutrient movement. Traditionally river discharge is estimated by measuring the water stage and converting the measurement to discharge using a stage-discharge rating curve. The possibility of monitoring river discharge from satellites has been largely ignored, because it is difficult to measure water surface information from space with sufficient precision. In this paper, an efficient approach to discharge estimation using mainly satellite data is developed and described. The proposed method, which focuses on the measurement of water-surface width coupled with river width-stage and stage-discharge relationships, is applied to the Yangtze River with good results.

  • PDF

실시간 예보 시스템을 위한 우량자료 보정 기법 연구 (A Study on the Reviesd Methods of Missing Rainfall Data for Real-time Forecasting Systems)

  • 한명선;김충수;김형섭;김휘린
    • 한국수자원학회논문집
    • /
    • 제42권2호
    • /
    • pp.131-139
    • /
    • 2009
  • 지구 온난화의 영향에 따른 기상 이변이 전세계적으로 급증하고 있다. 이에 따라 우리나라를 포함한 많은 나라에서 홍수예보 시스템과 수문자료를 저장하는 시스템을 운영하고 있다. 본 연구의 목적은 이러한 시스템에서 운영하고 있는 결측우량 보정방법을 알아보고 더 효과적인 보정방법을 찾아내어 제시하기 위함이다. 이를 위해 한강권역 194개 TM 우량관측소 10분 자료 이용하였다. 보정방법은 실시간 우량자료 보정시스템에서 사용이 용이한 산술 평균법, 역거리 가중법, 상관계수 가중법을 비교하였다. 결측방법 평가를 위해 일정 강우량 이상일 때의 조건에 대해 최소오차법을 사용하였다. 역거리 가중법의 경우 지수가 1.5나 2.0일 때의 결과가 양호하였으며, 방법 중에서는 상관계수가 중법이 정량적으로 가장 양호한 결과를 보였다.

중국 두만강 하류 유역의 습지 분류 특성에 관한 연구 (A Study On the Classification and Characteristics of Wetlands - Cases on the Watershed of Tumen River downstream in China -)

  • 주위홍;김귀곤
    • 한국환경복원기술학회지
    • /
    • 제5권1호
    • /
    • pp.35-50
    • /
    • 2002
  • This study aims to understand wetland distribution and type-specific classification features with a focus on Tumen River downstream in China by adjusting and improving the classification system used in Korea with a reference to international wetland classification systems and their criteria & methods. In this study, wetland types were determined based on hydrology, vegetation, and soil conditions, which are the most basic elements of wetlands. Also, topography analytical map, vegetation analytical map, and soil analytical map for wetland classification were developed and used based on currently available topography map, vegetation map, and soil map. In addition, codes were defined based on topography, location, hydrology, and vegetation. The result shows that, in the Tumen River downstream, wetlands are often found near natural revetment and terrace land & river-bed lakes. In the discovered wetlands, riverine, lacustrine, and inland wetlands were mostly found at system level. Riparian and human-made wetlands were also identified. At a sub-system level, perennial and seasonal wetlands were found to a similar degree. At a class level, perennial open water, herbal plants, and shrubs were mostly found and sandy plain, hydrophytes, and forest tree types were also observed. An overall detailed classification shows that a total of 17 wetland types were found and a large distribution of sand dunes and river-bed lakes, which are scarce in Northeast Asia, indicates that other rare wetland types such as palustrine seasonal sand plain wetland and lacustrine seasonal sand plain wetland may be discovered.

Sensitivity Analysis of High and Low Flow Metrics to Climate Variations

  • Kim, Jong-Suk;Jang, Ho-won;Hong, Hyun-Pyo;Lee, Joo-Heon
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.355-355
    • /
    • 2018
  • Natural hydrology systems, including high flow and low flow events, are important for aquatic ecosystem health and are essential for controlling the structure and function of ecological processes in river ecosystems. Ecosystem responses to flow changes have been studied in a variety of ways, but little attention has been given to how episodic typhoons and atmospheric circulation patterns can change these hydrologic regime-ecological response relationships. In this diagnostic study, we use an empirical approach to investigate the salient features of interactions between atmospheric circulation, climate, and runoff in the five major Korean river basins.

  • PDF

Transport and Loadings of Nutrients and Dissolved Major and Trace Elements in the Yeongsan River, Korea

  • Cha Hyun-Ju;Cho, Yeong-Gil
    • Journal of the korean society of oceanography
    • /
    • 제37권2호
    • /
    • pp.66-75
    • /
    • 2002
  • Temporal variation of nutrients and dissolved major and trace elements have been studied in the Yeongsan River, Korea. There were significant temporal fluctuations in the concentrations of these elements depending upon the flow condition. $NH_4$, $PO_4$, Na, Mg, Ca, K, Mn, Cu, Ni, Zn, Co, As and U concentrations were inversely related to the flow; that is, they are the highest at low flow and the lowest at high flow. It indicates that these elements are derived from point sources such as rock weathering and/or human activities and then diluted by increasing flow. Meanwhile, Fe and Si concentrations varied proportionally to the flow indicating that they are derived from diffuse sources including reactions within soil. The concentration-flow relationships showed that hydrology of the river is the most important factor controlling the chemical composition of the Yeongsan riverwater, which was compatible of the results of R-mode factor analysis.

Application of Convolutional Neural Networks (CNN) for Bias Correction of Satellite Precipitation Products (SPPs) in the Amazon River Basin

  • Alena Gonzalez Bevacqua;Xuan-Hien Le;Giha Lee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.159-159
    • /
    • 2023
  • The Amazon River basin is one of the largest basins in the world, and its ecosystem is vital for biodiversity, hydrology, and climate regulation. Thus, understanding the hydrometeorological process is essential to the maintenance of the Amazon River basin. However, it is still tricky to monitor the Amazon River basin because of its size and the low density of the monitoring gauge network. To solve those issues, remote sensing products have been largely used. Yet, those products have some limitations. Therefore, this study aims to do bias corrections to improve the accuracy of Satellite Precipitation Products (SPPs) in the Amazon River basin. We use 331 rainfall stations for the observed data and two daily satellite precipitation gridded datasets (CHIRPS, TRMM). Due to the limitation of the observed data, the period of analysis was set from 1st January 1990 to 31st December 2010. The observed data were interpolated to have the same resolution as the SPPs data using the IDW method. For bias correction, we use convolution neural networks (CNN) combined with an autoencoder architecture (ConvAE). To evaluate the bias correction performance, we used some statistical indicators such as NSE, RMSE, and MAD. Hence, those results can increase the quality of precipitation data in the Amazon River basin, improving its monitoring and management.

  • PDF

내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (I) (Dataset of Long-term Monitoring on the Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (I))

  • 이찬주;김동구;지운;김지성
    • Ecology and Resilient Infrastructure
    • /
    • 제6권1호
    • /
    • pp.23-33
    • /
    • 2019
  • 내성천은 경북 북부지역을 흐르는 모래하천으로 계절적 변동이 큰 수문학적 특성에 반응하여 발달하는 모래 하상의 역동성과 이른바 '화이트 리버'라고 하는 경관상 고유성으로 대표되는 하천이다. 하지만 2010년부터 영주댐이 건설되기 시작하고 2015년 전후로 식생이 광범위하게 활착하는 등 하천 변화가 발생하였다. 본 논문의 목적은 하천 변화의 원인이 될 수 있는 기후, 수문, 수질의 변화를 분석하고, 이에 따른 하천 변화의 가능성을 검토하기 위함이다. 분석 결과, 2015년에 1982년 다음으로 적은 강우량이 발생하였으며 이로 인해 여름철 첨두유량은 50년래 최저를 기록하였다. 내성천의 유사량 특성은 상하류가 크게 다르지 않았으나, 댐 건설과 무관하게 내성천의 연 최저수위가 지속적으로 감소하고 있었음을 확인하였다. 이는 간헐적 가뭄과 수질의 변화가 하천식생의 활착에 유리하게 작용하고, 이에 따른 물리적 변화가 하도 및 식생 활착에 영향을 준 것으로 추정된다. 그러므로 하천 변화의 원인 분석을 위해서는 하천 식생 변화와 연계한 다각적인 모니터링이 필요함을 확인하였다.

Developing a common socio-hydrological model based on the value-belief-norm theory

  • Akshita krithi Sobbhun;Hanseok Jeong
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.431-431
    • /
    • 2023
  • In recent decades, the socio-hydrology community has developed several socio-hydrological frameworks to understand the complexity of the coupled human-water system. Although there have been efforts to relate sociology and hydrology, there still have been some insights that remain debatable. As for this study, the Value-belief-norm theory was used to represent the human behavior in order to connect the human-water system. The theoretical framework of values, beliefs and norms was developed to understand the human culture towards the environment. In addition to the theory, norms are legislation of human behavior in the society while the values are the guiding principle to motivate beliefs and norms. The overview of this study implied on developing a socio-hydrological model consisting of the four systems defined as hydrology, socio-economy, technology and institutional. The interconnectors between the four systems are the key variables and parameters representing a module namely the causal loop diagram. Moreover, water quality, size of population, infrastructure capacity and norms are the key variables to connect the four systems. The developed model will be applied to Han River to represent the coevolutionary of the dynamics of human-water systems.

  • PDF