• Title/Summary/Keyword: river flow measurement

Search Result 127, Processing Time 0.02 seconds

Analysis and Comparison of Flow Rate Measurements Using Various Discharge Measuring Instrument and ADCP (다양한 유량 측정기기와 ADCP를 이용한 유량 비교 분석)

  • Ji, Ju-Yeon;Park, Seung-Yong;Lee, Gwang-Woo;Park, Gyeong-Min;Hwang, Soon-Hong;Kim, Dong-Ho;Lee, Young-Joon
    • Journal of Environmental Science International
    • /
    • v.22 no.2
    • /
    • pp.251-257
    • /
    • 2013
  • Discharge data examine the process of hydrologic cycle and used significantly in water resource planning and irrigation and flood control planning. It makes high quality discharge data, they carry out research on standard and method of discharge measurement, and equipment improvement. Now various flow meters are utilized to make discharge data in Korea. However, accuracy of equipment and exprerimental research data from measurement are not enough. ADCP(Acoustic Doppler Current Profiler) have been introduced and utilized for flow measurements since the end of 1980's. ADCP flow method is a formal method for flow measurement can easily applyd to relatively large rivers gradually recognized. This equipment can measure the non-contact three-dimensional velocity and water depth data very quickly and efficiently. Also, spatial and temporal resolution of the data is more accurate than any other flow measurement methods which measure flow rate by velocity - area measurement method. In this paper, the velocity is measured using various flow meter and verified the effectiveness by applying from the ADCP in Geum-river. Various flow meters which are med for discharge measurements are VALEPORT002, FLOW TRACKER, PRICE AA and ADCP. The average of five times flow measurement result by ADCP was $10.412m^3/s$, with a standard deviation of 0.68. The repeat test by ADCP and comparison between ADCP and other flow devices to verify the most import factor, flow measurement accuracy. In the result, repeat test of the ADCP showed similar values, flow values were similar to other velocity device results and the average error is 7.7%.

Comparative Analysis of ADCP Flow Measurement According to River Bed Material (하상재료에 따른 ADCP의 유량측정 비교 분석)

  • Choi, Jin-Woo;Hong, Chang-Su;Shin, Kyung-Yong;Lee, Jin Uk;Kim, Jeong-ae;Cho, Yong-Chul;Yu, Soon-Ju
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.3
    • /
    • pp.156-162
    • /
    • 2018
  • This research aimed at analyzing comparison results between in gravel and sand bed with respect to the detailed Acoustic Doppler Current Profiler (ADCP) measurement in a velocity, depth, and flow rate data based on Acoustic Doppler Velocimeter (ADV) measurement result. Conclusionally, similar results were shown for gravel and sand bed in velocity, depth and flow rate data using ADV and ADCP measurement. The results of the flow rate show a relative error mean of 3.5 - 4.8% in the gravel bed and 0.02 - 3.2% in the sand bed, which is better performance than the mean error of 5% suggested by United States Geological Survey (USGS). The results can be used as a basis data for the measurement of ADCP and potentially able to be utilized for the more detailed uncertainty analysis of ADCP flow rate measurement.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.2
    • /
    • pp.202-209
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of a sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. Flow and water quality data, such as BOD, COD, SS, T-N, and T-P data, for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS, and T-P were correlated positively with the river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluents and downstream streams, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between the river flow rate and the water quality factors (COD, SS, TP) was high at river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

Water Quality Correlation Analysis between Sewage Treated Water and the Adjacent Downstream Water in Nakdong River Basin (낙동강유역의 하수처리장 방류수와 인접 하류하천의 수질상관관계 분석)

  • Cho, Hyun Kyung;Kim, Sang Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.493-493
    • /
    • 2018
  • The purpose of this study was to analyze the correlation between the effluent of the sewage treatment plant (STP) and the adjacent stream located downstream of the STP in Nakdong River. The flow and water quality such as BOD, COD, SS, T-N, and T-P data for 12 STPs and adjacent downstream monitoring stations in the main stream and tributaries of Nakdong River were collected from 2012 to 2015. As a result of correlation analysis between river flow and water quality at the river water quality measurement point, COD, SS and T-P were correlated positively with river flow rate at 6, 8, and 6 points, respectively. As a result of analyzing the water quality of sewage treatment plant effluent and downstream stream, BOD and COD were correlated at 2 and 3 points, respectively. T-N showed a positive correlation at 9 points, and 7 of them had a strong positive correlation, indicating that sewage treatment effluent had a large effect on downstream streams. In this study, we found that the correlation between river flow rate and water quality factors (COD, SS, TP) was high for river water measurement points, and the sewage treatment plant effluent was correlated with the T-N value of adjacent streams.

  • PDF

A Study on the River Discharge Measurement Techniques (하천유량 측정기법에 관한 연구)

  • 김성원;지홍기
    • Journal of Environmental Science International
    • /
    • v.7 no.6
    • /
    • pp.793-801
    • /
    • 1998
  • In this study, the Dilution Method is used to measure river discharge through the hydraulic model test. the dilution method is divided into Constant-Rate-Infection Method and Slug-Injection Method in the river discharge measurement techniques. When the dilution method is applied in the hydraulic model flume, it is analyzed that the estimated error of constant-rate-injection method is less than that of the slug-in-jection method, and the result shows that floodflow analysis is more efficient than lowflow analysis as compared observed discharge with calculated discharge. The result of statistical error analysis shows that the constant-rate-injection method is appropriate technique for the measurement of the river discharge. Therefore, the dilution method among the river discharge measurement techniques can be applied for the river basin which can't be measured with current meter or unsteady-flow regime in the urban-small drainage or hydraulic structure equipment area and can be obtained more exact results than any other discharge measurement techniques.

  • PDF

Development of Flow Interpolation Model Using Neural Network and its Application in Nakdong River Basin (유량 보간 신경망 모형의 개발 및 낙동강 유역에 적용)

  • Son, Ah Long;Han, Kun Yeon;Kim, Ji Eun
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.5
    • /
    • pp.271-280
    • /
    • 2009
  • The objective of this study is to develop a reliable flow forecasting model based on neural network algorithm in order to provide flow rate at stream sections without flow measurement in Nakdong river. Stream flow rate measured at 8-days interval by Nakdong river environment research center, daily upper dam discharge and precipitation data connecting upstream stage gauge were used in this development. Back propagation neural network and multi-layer with hidden layer that exists between input and output layer are used in model learning and constructing, respectively. Model calibration and verification is conducted based on observed data from 3 station in Nakdong river.

Development of Long Term Flow Duration Curves for the Management of Total Maximum Daily Loads - in the Nakdong River Basin - (수질오염총량관리 단위유역 장기유황곡선 구축 -낙동강수계를 대상으로-)

  • Kim, Gyeong hoon;Kwon, Heon gak;Ahn, Jung min;Kim, Sanghun;Im, Tae hyo;Shin, Dong seok;Jung, Kang-Young
    • Journal of Environmental Science International
    • /
    • v.26 no.8
    • /
    • pp.939-953
    • /
    • 2017
  • For the development of flow duration curves for the management of 41 Total Maximum Daily Load (TMDL) units of the Nakdong River basin, first, an equation for estimating daily flow rates as well as the level of correlation (correlation and determination coefficients) was extrapolated through regression analysis of discrete (Ministry of Environment) and continuous (Ministry of Land, Infrastructure and Transportation) measurement data. The equation derived from the analysis was used to estimate daily flow rates in order to develop flow duration curves for each TMDL unit. By using the equation, the annual flow duration curves and flow curves, for the entire period and for each TMDL unit of the basin, were developed to be demonstrated in this research. Standard flow rates (abundant-, ordinary-, low- and drought flows) for major flow duration periods were calculated based on the annual flow duration curves. Then, the flow rates, based on percentile ranks of exceedance probabilities (5, 25, 50, 75, and 95%), were calculated according to the flow duration curves for the entire period and are suggested in this research. These results can be used for feasibility assessment of the set values of primary and secondary standard flow rates for each river system, which are derived from complicated models. In addition, they will also be useful for the process of implementing TMDL management, including evaluation of the target level of water purity based on load duration curves.

A Nonparametric Long-Term Trend Analysis Using Water Quality Monitoring Data in Nam-River (남강 수질측정망 자료를 이용한 비모수적 장기 수질 추세 분석)

  • Jung, Kang-Young;Kim, Myojeong;Song, Kwang Duck;Seo, Kwon Ok;Hong, Seong Jo;Cho, Sohyun;Lee, Yeong Jae;Kim, Kyunghyun
    • Journal of Environmental Science International
    • /
    • v.27 no.11
    • /
    • pp.1029-1048
    • /
    • 2018
  • In this study, seasonal Mann - Kendall test method was applied to 12 stations of the water quality measurement network of Nam-River based on data of BOD, COD, TN and TP for 11 years from January 2005 to December 2015 The changes of water quality at each station were examined through linear trends and the tendency of water quality change during the study period was analyzed by applying the locally weighted scatter plot smoother (LOWESS) method. In addition, spatial trends of the whole Nam-River were examined by items. The flow-adjusted seasonal Kendall test was performed to remove the flow at the water quality measurement station. As a result, BOD, COD concentration showed "no trand" and TN and TP concentration showed "down trand" in regional Kendall test throughout the study period. BOD and TP concentration in "no trand", COD, and TN concentration showed an "up trand" tendency in Nam-River dam. LOWESS analysis showed no significant water quality change in most of the analysis items and stations, but water quality fluctuation characteristics were shown at some stations such as NR1 (Kyungho-River 1), NR2 (Kyungho-River 2), NR3 (Nam-River), NR6 (Nam-River 2A). In addition, the flow-adjusted seasonal Kendall results showed that the BOD concentration was "up trand" due to the flow at the NR3 (Nam-River) station. The COD concentration was "up trand" due to the flow at NR1 (Kyungho-River 1) and NR2 (Kyungho-River 2) located upstream of the Nam-River. The effect of influent flow on water quality varies according to each site and analysis item. Therefore, for the effective water quality management in the Nam-River, it is necessary to take measures to improve the water quality at the point where the water quality is continuously "up trand" during the study period.

Flow and Diffusion of Lower Han River Considering Tidal Elevation in Yellow Sea (서해안 조위를 고려한 한강 하류부의 흐름 및 확산)

  • Seo, Il-Won;Song, Chang-Geun;Lee, Myung-Eun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.199-202
    • /
    • 2008
  • It is well-known fact that tidal difference between the ebb and flow in Yellow Sea is about 9 m so that it has largest value in the world. This wide range of tide level enables Yellow Sea water to intrude into main stream of Han River. However, the study of the tidal reach of Han River has not been carried out thoroughly since North and South Koreas share this region so that topography data and physical measurement are lacking. In this study, to examine the reverse flow and dispersion behavior by tidal effect at the tidal reach of Han River, 2-D river analysis models were applied. RMA-2 was applied to calculate the horizontal velocities and water surface elevation. With the results of velocities and water depth, RAM4, which is 2-D advection-dispersion model based on FEM was simulated to analyze the horizontal transport behavior of BOD.

  • PDF

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.