• Title/Summary/Keyword: river flow estimation

Search Result 247, Processing Time 0.032 seconds

Return Flow Rate Estimation of Irrigation for Paddy Culture in Chuncheon Region of the North Han River Basin (북한강 유역 춘천지역의 논 농업용수 회귀율 산정)

  • Choi Joong-Dae;Choi Ye-Hwan
    • KCID journal
    • /
    • v.9 no.2
    • /
    • pp.68-77
    • /
    • 2002
  • Return flow rate of agricultural irrigation for rice culture was investigated in the North Han river basin, Two small paddy watersheds were chosen and irrigation, drainage, infiltration and evapotranspiration were monitored and estimated during the irriga

  • PDF

Prediction of Water-Quality Enhancement Effects of Gates Operation in the West-Nakdong River Using RMA2/RMA4 Models (RMA2/RMA4 모형을 이용한 서낙동간 수문연계운영의 수질개선 효과 예측)

  • Lee, Keum-Chan;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.971-981
    • /
    • 2009
  • An objective of this study is as follows: 1) performing sensitivity analysis and parameter estimation of RMA2 and RMA4 models for the West-Nakdong River, 2) drawing up alternatives of gates-operation for water-quality enhancement, and 3) quantitative evaluation of methodology of 'flow-restoration by gates-operation' among 'Comprehensive Plan Improving Water-Quality in the West-Nakdong River(WNR)' with the target water-quality(BOD at Nakbon-N point: below 4.3 mg/L). The parameters for the RMA2 (depth-averaged two-dimensional flow model) and RMA4 (depth-averaged two-dimensional water-quality model) were determined by sensitivity analysis. Result of parameter estimation for RMA2 and RMA4 models is $1,000\;Pa{\cdot}s$ of the eddy viscosity, 20 of the Peclet number, 0.025 of the Manning coefficient, and $1.0\;m^2/s$ of the diffusion coefficient. We have evaluated the effects of water-quality enhancement of the selected alternatives by numerical simulation technique with the models under the steady-state flow condition and the time-variant transport condition. Because of no-resuspension from river bottom and considering BOD as conservative matter, these simulation results slightly differ from real phenomena. In the case of $50\;m^3/s$ of Daejeo-gate inflow, two-dimensional flow pn results result represents that small velocity occurs in the Pyungkang Stream and no flow in the Maekdo River. In the WNR, there occurs the most rapid flow near timhae-bridge. In the WNR, changes of water-quality for the four selected simulation cases(6, 10, 30, $50\;m^3/s$ of the Daejeo-gate inflow) were predicted. Since the Daejeo-Gate and the Noksan-Gate can be opened up to 7 days, it would be found that sustainable inflow of $30\;m^3/s$ at the Daejeo-gate makes BOD in the WNR to be under the target of water-quality.

Low Flow Estimation for River Water Quality Models using a Long-Term Runoff Hydrologic Model (장기유출 수문모형을 이용한 하천수질모형의 기준유량 산정)

  • Kim, Sangdan;Lee, Keon Haeng;Kim, Hung Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.575-583
    • /
    • 2005
  • In this study the flow curve estimation is discussed using TANK model which is one of hydrologic models. The main interest is the accuracy of TANK model parameter estimation with respect to the sampling frequency of input data. For doing this, input data with various sampling frequencies is used to estimate model parameters. As a result, in order to generate relatively accurate flow curve, it is recommendable to measure stream flow at least every 8 days.

A Study on Estimation by Depth Integrating Method of Sediment Discharge (수심적분법에 의한 유사량 추정연구)

  • 서승덕;김활곤;우효섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.90-97
    • /
    • 1996
  • In Korea, total sediment discharge of a river has been estimated simply by using certain sediment transport formulas including, among others, Einstein's formula. Those formular, however, are known not to be reliable enough for the result calculated by them to be used directly to river planning and management. Therefore, the study used the Modified Einstein Procedure to the estimation of total sediment discharge, because this method is reliable estimated by measurement. Here, measurement of sediment discharge used depth integrating method. The major results obtained from the study for estimation by depth integrating method of sediment discharge in Naeseong stream are as follow; 1 The sedeiment characteristics of Naeseong stream are; The distribution of sediment grain size shows that silt and clay are 55% and sand is 45%. and the bed load sediment grain size is constituted that sand contained with the grain size from O.062mm to 2.0mm is 80% 2. The sediment rating formulas derived from the regression analysis between the sediment discharge and flow discharge are; Seogpo-Gyo : Qs=$0.017 \times 10^{-4} Q^{2.352}$, where discharge is l0cms $0.074 \times 10^{-4} Q^{2.066}$, where discharge is l0cms

  • PDF

A STUDY ON THE PARAMETER ESTIMATION OF SNYDER-TYPE SYNTHETIC UNIT-HYDROGRAPH DEVELOPMENT IN KUM RIVER BASIN

  • Jeong, Sang-man;Park, Seok-Chae;Lee, Joo-Heon
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.219-229
    • /
    • 2001
  • Synthetic unit hydrograph equations for rainfall run-off characteristics analysis and estimation of design flood have long and quite frequently been presented, the Snyder and SCS synthetic unit hydrograph. The major inputs to the Snyder and SCS synthetic unit hydrograph are lag time and peak coefficient. In this study, the methods for estimating lag time and peak coefficient for small watersheds proposed by Zhao and McEnroe(1999) were applied to the Kum river basin in Korea. We investigated lag times of relatively small watersheds in the Kum river basin in Korea. For this investigation the recent rainfall and stream flow data for 10 relatively small watersheds with drainage areas ranging from 134 to 902 square kilometers were gathered and used. 250 flood flow events were identified along the way, and the lag time for the flood events was determined by using the rainfall and stream flow data. Lag time is closely related with the basin characteristics of a given drainage area such as channel length, channel slope, and drainage area. A regression analysis was conducted to relate lag time to the watershed characteristics. The resulting regression model is as shown below: ※ see full text (equations) In the model, Tlag is the lag time in hours, Lc is the length of the main river in kilometers and Se is the equivalent channel slope of the main channel. The coefficient of determinations (r$^2$)expressed in the regression equation is 0.846. The peak coefficient is not correlated significantly with any of the watershed characteristics. We recommend a peak coefficient of 0.60 as input to the Snyder unit-hydrograph model for the ungauged Kum river watersheds

  • PDF

국가 지하수 관측망의 수위 및 온도 자료를 이용한 함양량 산정

  • 박창희;구민호;이대하;김형수
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.351-356
    • /
    • 2002
  • Groundwater recharge rate was estimated by applying the groundwater level fluctuation method utilizing Theis (1937) approach with specific yield estimation technique of Shevenell (1996) and the temperature method using observed data from National Groundwater Observation Stations. Results based on analysis of water level observation data of 10 alluvium wells reveal that the recharge rates for 5 wells of Kum river area range 3.7~25.0% and those for 5 wells of Nakdong river area range 3.6~21.7%. Results obtained from the temperature method based on water temperature data indicated that the upward flow resulted from evapotranspiration is dominant for 4 wells of the Kum river area and 5 wells of the Nakdong river area. The other wells showed the downward flow which is related to groundwater recharge in these areas.

  • PDF

Development of Regression Equation for Water Quantity Estimation in a Tidal River (감조하천에서의 저수위 유량산정 다중회귀식 개발)

  • Lee, Sang Jin;Ryoo, Kyong Sik;Lee, Bae Sung;Yoon, Jong Su
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.3
    • /
    • pp.385-390
    • /
    • 2007
  • Reliable flow measurement for dry season is very important to set up the in-stream flow exactly and total maximum daily load control program in the basin. Especially, in the points which tidal current effects are dominant because reliability of the low measurement decrease. The reliable measuring methods are needed. In this study, we analysis the water surface elevation difference of water surface elevation. Quantity relationship to consider tidal currents in these regions. It is known that tidal current effects from Nakdong river barrage are dominant in Samrangjin measuring station. We developed multiple regression equation with water surface elevation, quantity, and difference of water surface elevation and compared these results water measured rating curve. All of these regression equation including linear regression equation and log regression equation fits better measured data them existing water surface elevation quantity line and Among three equations, the log regression equation is best to represent the measured the rating curve in Samrangjin point. The log regression equation is useful method to obtain the quantity in the regions which tidal currents are dominant.

Uncertainty Analysis in Estimation of Roughness Coefficient Using the Field Measurement Data (현장실측에 의한 조도계수 산정의 불확실도 평가)

  • Kim, Ji-Sung;Lee, Chan-Joo;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.10
    • /
    • pp.801-810
    • /
    • 2007
  • In this study, validity and limitation of the estimation of roughness coefficient using the measured field data are investigated and the errors of the calculated roughness coefficient are analyzed. The assumption of uniform flow led to much difference of the computed results in low flow, and this is due to change of the cross-section informations such as flow area and hydraulic radius rather than the difference of velocity head. From the comparison between the estimations of average roughness coefficient in the reach which is relatively long, the calculation using the modified Newton-Raphson method is very efficient and accurate. In the measured roughness coefficient, the errors of measured flow and stage are included and the lower flow is, the larger the magnitude of error of measured roughness coefficient is. But the error of depth and velocity associated with uncertainty of roughness coefficient is less than about 5% in the both of low and high flow, and it shows the validity of measured roughness coefficient.

Estimation of Ecological Instream Flow Considering the River Characteristics and Fish Habitat in the Downstream of Yongdam Reservoir (용담댐 하류의 어류서식처를 고려한 생태학적 유지유량 산정)

  • Jang, Chang-Lae;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.42 no.3
    • /
    • pp.374-381
    • /
    • 2009
  • Ecological instream flow was quantitatively calculated based on the river characteristics and fish habitat in the downstream of Yongdam Reservoir. The river bed and width did not change from 1988 before the am construction to 2004 after the dam construction, but the bed sediment size was attenuated a little in 2004. According to result that investigate fishes, 4 family 11 species including Acheilognathus koreensis were collected. Among them, Zacceo koreanus of cyprinidae was dominant, and Coreoleuciscus splendidus did sub-dominant. The habitat suitability indexes were estimated for two fish species Zacco koreanus and Coreoleuciscus splendidus using Physical Habitat Simulation System (PHABSIM) considering the river characteristics. In Gamdong and Daeti sites, the optimal ecological flow for Z. koreanus and C. splendidus were $13.90\sim12.60\;m^3\;s^{-1}$ and $15.50\sim11.60\;m^3\;s^{-1}$, respectively. In contrast, the optimal flow for the two species in Bunam site were $7.00\;m^3\;s^{-1}$. The ecological instream flow in the downstream of Yongdam Reservoir was between normal and high flow rate.