• Title/Summary/Keyword: river channel

Search Result 771, Processing Time 0.024 seconds

Analysis of Hydraulic Characteristics of Flood Plain Using Two-Dimensional Unsteady Model (2차원 부정류 모형을 이용한 둔치의 수리특성 분석)

  • Ku, Young Hun;Song, Chang Geun;Kim, Young Do;Seo, Il Wo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.997-1005
    • /
    • 2013
  • Since the cross-sectional shape of the Nakdong river is compound type, the water stage rises up to the top of the flood plane, as the flow discharge increases during the extreme rain storm in summer. The recent increase of rainfall intensity and flood frequency results in the immersions of parks and hydrophilic facilities located in the flood plain. Therefore it is necessary to analyze the hydraulic characteristics evolved by the extreme rain storm in the flood plain. The study reach ranging from the Gangjeong Goryeong Weir and the Dalseong Weir, where several hydraulic facilities are located along the channel, was selected and numerical simulations were conducted for 42 hours including the peak flood of the typhoon Sanba. The 2-D transient model, FaSTMECH was employed and the accuracy of the model was assessed by comparing the water level between the simulation results and the measured ones at a gauging station. It showed a high correlation with $R^2$ of 0.990, AME of 0.195, and RMSE of 0.252. In addition, the inundation time, the inundation depth, the inundation velocity, and the shear stress variation in the flood plain facilities were analyzed.

A Study on the Origin of Anomalously Low Saline Tsushima Current Water Using $^{228}Ra$ ($^{228}Ra$를 이용한 이상 저염 대마난류수의 기원 추적 연구)

  • Lee, Tong-Sup;Kim, Ki-Hyun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.175-182
    • /
    • 1998
  • Recently it is reported that anomalously low saline surface waters (salinity < 32) occurred at the Ulleung Basin in the East Sea-Japan Sea, during early September to November 1996. Apparent source of such a low saline watermass seems remotely linked to the Changjiang Dilute Water (CDW), which expands to the vicinity of Cheju Island during a flood season. Based on the assumption that waters passing through the Western Channel of the Korea Strait are formed by a mixing of Kuroshio Water and CDW, simplified two end-member mixing model using $^{228}Ra/^{226}Ra$ as a conservative tracer is applied to calculate the contribution of each end member for the formation of low saline surface seawater. Model calculations show CDW contributes $58{\pm}3%$ in September 1996 (S=32.17) and $10{\pm}3%$ in February 1997 (S=34.53) in the formation of surface water flowing into the Western Channel of the Korea Strait. Although results arc deduced from a simplified model with limited data, this study demonstrates that Changjiang discharge is clearly traceable to the interior of the East Sea-Japan Sea in fall season. Undergoing Three Valley Dam construction in the Changjiang River would invoke inevitable changes in the nature and discharge of CDW and its impacts on the marine environment might be significant in the northern East China Sea and even in the Ulleng Basin for coming decades.

  • PDF

Introduction and Application of 3D Terrestrial Laser Scanning for Estimating Physical Structurers of Vegetation in the Channel (하도 내 식생의 물리적 구조를 산정하기 위한 3차원 지상 레이저 스캐닝의 도입 및 활용)

  • Jang, Eun-kyung;Ahn, Myeonghui;Ji, Un
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.2
    • /
    • pp.90-96
    • /
    • 2020
  • Recently, a method that applies laser scanning (LS) that acquires vegetation information such as the vegetation habitat area and the size of vegetation in a point cloud format has been proposed. When LS is used to investigate the physical shape of vegetation, it has the advantage of more accurate and rapid information acquisition. However, to examine uncertainties that may arise during measurement or post-processing, the process of adjusting the data by the actual data is necessary. Therefore, in this study, the physical structure of stems, branches, and leaves of woody vegetation in an artificially formed river channel was manually investigated. The obtained results then compared with the information acquired using the three-dimensional terrestrial laser scanning (3D TLS) method, which repeatedly scanned the target vegetation in various directions to obtain relevant information with improved precision. The analysis demonstrated a negligible difference between the measurements for the diameters of vegetation and the length of stems; however, in the case of branch length measurement, a relatively more significant difference was observed. It is because the implementation of point cloud information limits the precise differentiation between branches and leaves in the canopy area.

An Analysis of Spectral Characteristic Information on the Water Level Changes and Bed Materials (수위변화에 따른 하상재료의 분광특성정보 분석)

  • Kang, Joongu;Lee, Changhun;Kim, Jihyun;Ko, Dongwoo;Kim, Jongtae
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.243-249
    • /
    • 2019
  • The purpose of this study is to analyze the reflectance of bed materials according to changes in the water level using a drone-based hyperspectral sensor. For this purpose, we took hyperspectral images of bed materials such as soil, gravel, cobble, reed, and vegetation to compare and analyze the spectral data of each material. To adjust the water level, we constructed an experimental channel to control the discharge and installed the bed materials within the channel. In this study, we configured 3 cases according to the water level (0.0 m, 0.3 m, 0.6 m). After the imaging process, we used the mean value of 10 points for each bed material as analytical data. According to the analysis, each material showed a similar reflectance by wavelength and the intrinsic reflectance characteristics of each material were shown in the visible and near-infrared region. Also, the deeper the water level, the lower the peak reflectance in the visible and near-infrared region, and the rate of decrease differed depending on the bed material. We expect the intrinsic properties of these bed materials to be used as basic research data to evaluate river environments in the future.

Distribution of Geomorphological Landscape Resources of Goryeong-gun, and Its Application Plan (고령군 지형경관자원의 분포와 활용방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.14 no.4
    • /
    • pp.279-289
    • /
    • 2008
  • The purpose of this paper is to search for geomorphological landscape resources of Goryeong-gun, to provide fundamental data for their management through mapping their distribution, and to present their conservation and application plan. The results are as follow: Firstly, geomorphological landscape resources in mountain area are Misungsan and Jusan mountain of Goryeong-up, Sangbiri valley of Deoggok-myeon, and isolated hill of Gaejin-myeon. Secondly, geomorphological landscape resources in riparian area are natural wetlands such as Jinchonneup of Bu-ri Gaejin-myeon, Hochonneup and Dalseongseupji of Hochon-ri Dasan-myeon, Bongsanneup of Bongsan-ri Ugok- myeon; artificial wetlands following the construction of weir such as riparian wetland of Oe-ri Goryeong-up and Banun-ri Gaejin-myeon; meander core and abandoned channel of Banun-ri Gaejin -myeon, river cliffs such as Naegok-ri Goryeong-up and Weolo-ri Ugok-myeon; sand bars and braided channel of Yajeong-ri Ugok-myeon. Thirdly, Jinchonneup swamp area of Bu-ri Gaejin-myeon have characteristics of typical floodplain landform, and its conservation conditions is relatively satisfactory, and its accessibility to metropolis is great, so it is a good place to construct eco-park. And construction of inquiry learning place at Banun-ri Gaejin-myeon will increase the opportunity to observe environmental changes following incised meander cutoff and ecological affirmative functions of a weir.

  • PDF

The Generic Terms and the Standards of a Delimitation for Oceans and Seas based on S-23(Names and Limits of Oceans and Seas) (S-23(Names and Limits of Oceans and Seas)을 기초로 한 바다의 속성지명과 바다경계의 획정 근거 분석)

  • Sung, Hyo Hyun;Kang, Jihyun
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.6
    • /
    • pp.914-928
    • /
    • 2013
  • Establishment of limits and names for oceans and seas is necessary for a safety of navigation. Even if there are no national and international standard for the delimitation of sea boundaries, we can take guidelines for the delimitation of sea boundaries through the analysis of IHO official publications, Limits and Names for Oceans and Sea; S-23. This paper shows the changes of the spatial limit of seas since first edition publication, and the standards for a delimitation of oceans and seas were analyzed using S-23 4th edition draft(2002) in terms of physical geographic features. The generic terms of S-23 include Ocean, Sea, Channel, Passage, Strait, Sound, Gulf, Bay and Bight, and each generic term shows hierarchical structures. Several seas show different characteristics compared with definitions of IHO dictionary. Sea boundaries are delimited by longitude and latitude, cape, river mouth, sandbar, and so on. Undersea features such as a shelf, trench, trough, rise, bank and reef are also important features for delimitation of sea boundary. Especially, seas that are delimited by undersea feature are mainly located Arctic and Southern ocean area in S-23 4th edition. Advanced knowledge of marine science with a technical advance might affect to delimit for sea boundary.

  • PDF

Estimatation of Mean Velocity from Surface Velocity (표면유속을 이용한 평균유속 추정방법의 개발)

  • Roh, Young-Sin;Yoon, Byung-Man;Yu, Kwon-Kyu
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.11
    • /
    • pp.917-925
    • /
    • 2005
  • LSIV (Large Scale Image Velcocimetry) Is one of the image-based velocity measurement techniques. Since it measures surface velocities, it gives simple and inexpensive way to measure velocity, compared to other methods. Because of these advantages, there have been many studies to apply LSIV to the river discharge measurement in the field. Measuring the discharge by using LSIV requires a method which converts a surface velocity to a mean velocity In the present study, experiments and analysis of vortical velocity profile of open-channel flow in various conditions were performed to develop methods which estimate a mean velocity from a surface velocity. The result of this experiment reveals that velocity-dip phenomena occur at free-surface layer in open channel flow and Froude number affects more than bed roughness does. Two methods for estimating the mean velocity were proposed. One is to correct the wake law's profiles by using the difference of surface velocity from the mean velocity, and the other is to use the ratio of mean and surface velocities. The result of applying these methods in an experiment shows that they are quite accurate having an error of approximately $6\%$ only.

Analysis on the Bluegill Blocking Effects using Bubbles (버블을 이용한 파랑볼우럭 차단 효과 분석)

  • Kang, Joon-Gu;Kim, Jong-Tae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.390-397
    • /
    • 2017
  • The introduction of exotic fish species may reduce the number of native fish species and disturb the aquatic ecosystem. Therefore, measures to block and manage fish species are required. Accordingly, a fish species blocking system using bubbles was developed in this study to block exotic fish species. An experimental channel was produced and the possibility of blocking such exotic fish species was evaluated. The bubble generator is a system that produces a bubble curtain by generating air with an air compressor that blocks fish species. Bluegill, which is an exotic fish species in the country, was tested with this generator. The size of bluegill was between 0.10 m and 0.15 m and the depth of water was maintained at 0.70 m. The flow velocity of the experiment channel was classified into 3 levels (0.20 m/s, 0.10 m/s, and 0.05 m/s) considering the natatorial ability of the fish species. The results revealed that 70.07% of bluegill showed movements to swim upstream before applying the bubble, but it is considered that the ascending rate would be higher given that the fish species thinks downstream is a habitat and showed almost no movement. However, when the blocking facility was installed, most fish species showed movements to return to the downstream again by the bubble curtain, indicating a very high blocking effect. In particular, when the generating bubble was terminated, the fish species swam back to the upstream area very soon, so the fish species blocking effect using the bubble was excellent.

Factors to Affect the Growth of Filamentous Periphytic Algae in the Artificial Channels using Treated Wastewater (하수처리수를 이용한 인공수로에서 사상성 부착조류의 성장에 영향을 미치는 요인들)

  • Park, Ku-Sung;Kim, Ho-Sub;Kong, Dong-Soo;Shin, Jae-Ki;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.1 s.115
    • /
    • pp.100-109
    • /
    • 2006
  • This study evaluated the effects of water velocity, substrates, and phosphorus concentrations on the growth of filamentous periphytic algae (FPA) in the two types of artificial channel systems using treated wastewater. Controlled parameters included 5 ${\sim}$ 15 cm $s^{-1}$ for the water velocity; 10 and 20 mm wire meshes, natural fiber net, gravel and tile for the substrates: and 0.05 ${\sim}$ 1.0 mgP $L^{-1}$ for the P concentration. Algal growth rate of FPA was compared using both chi. a and dry weight change with time. Under the controlled water velocity range, the growth of FPA increased with the velocity, but the maximum growth rate was shown in the velocity of 10 cm $s^{-1}$. The substrate that showed the maximum growth of FPA differed between the artificial channel and indoor channel, due to the influence of suspended matters which caused the clogging of the meshed substrates. Under the controled range of P concentration, the growth rates of all three FPA species (Spirogyra turfosa, Oedogonium fovelatum, Rhizoclonium riparium) increased with the P increase, but they showed the differential growth rates among different P concentrations. The results of this study suggest that under the circumstance having an large amount of nutrients FPA develop the biomass rapidly and that even a little increase over the threshold velocity causes the detachment of filamentous periphytic algae. Thus, FPA dynamics in eutrophic streams, such as those receiving treated wastewater, seem to be sensitive to the water velocity. On the other hand, detached algal filaments could deteriorate water quality and ecosystem function in receiving streams or down-stream, and thus they need to be recognized as an important factor in water quality management in eutrophic streams.

Dataset of Long-term Investigation on Change in Hydrology, Channel Morphology, Landscape and Vegetation Along the Naeseong Stream (II) (내성천의 수문, 하도 형태, 경관 및 식생 특성에 관한 장기모니터링 자료 (II))

  • Lee, Chanjoo;Kim, Dong Gu;Hwang, Seung-Yong;Kim, Yongjeon;Jeong, Sangjun;Kim, Sinae;Cho, Hyeongjin
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.1
    • /
    • pp.34-48
    • /
    • 2019
  • Naeseong Stream is a natural sand-bed river that flows through mountainous and cultivated area in northern part of Gyeongbuk province. It had maintained its inherent landscape characterized by white sandbars before 2010s. However, since then changes occurred, which include construction of Yeongju Dam and the extensive vegetation development around 2015. In this study, long-term monitoring was carried out on Naeseong Stream to analyze these changes objectively. This paper aims to provide a dataset of the investigation on channel morphology and vegetation for the period 2012-2018. Methods of investigation include drone/terrestrial photography, LiDAR aerial survey and on-site fieldwork. The main findings are as follows. Vegetation development in the channel of Naeseong Stream began around 1987. Before 2013 it occurred along the downstream reach and since then in the entire reach. Some of the sites where riverbed is covered with vegetation during 2014~2015 were rejuvenated to bare bars due to the floods afterwards, but woody vegetation was established in many sites. Bed changes occurred due to deposition of sediment on the vegetated surfaces. Though Naeseong Stream has maintained its substantial sand-bed characteristics, there has been a slight tendency in bed material coarsening. Riverbed degradation at the thalweg was observed in the surveyed cross sections. Considering all the results together with the hydrological characteristics mentioned in the precedent paper (I), it is thought that the change in vegetation and landscape along Naeseong Stream was mainly due to decrease of flow. The effect of Yeongju Dam on the change of the riverbed degradation was briefly discussed as well.