• Title/Summary/Keyword: ring sensor

Search Result 214, Processing Time 0.025 seconds

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Resolution Obstacle Detection (고분해능 장애물 탐지를 위한 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • This paper presents the optimal design of an overlapped ultrasonic sensor ring for high resolution obstacle detection of an autonomous mobile robot. It is assumed that a set of low directivity ultrasonic sensors of the same type are arranged along a circle of nonzero radius at a regular spacing with their beams overlapped. First, taking into account the dead angle region, the entire range of obstacle detection is determined with reference to the center of an overlapped ultrasonic sensor ring. Second, the optimal design index of an overlapped ultrasonic sensor ring is defined as the area closeness of three sensing subzones resulting from beam overlap. Third, the lower and upper bounds on the number of ultrasonic sensors are derived, which can guarantee minimal beam overlap and also avoid excessive beam overlap among adjacent ultrasonic sensors. Fourth, employing a commercial low directivity ultrasonic sensor, an optimal design example of an overlapped ultrasonic sensor ring is given along with the ultrasonic sensor ring prototype mounted on top of a mobile robot. Finally, some experimental results using our prototype ultrasonic sensor ring are given to demonstrate the validity and performance of an optimally overlapped ultrasonic sensor ring for high resolution obstacle detection.

R3: A Lightweight Reactive Ring based Routing Protocol for Wireless Sensor Networks with Mobile Sinks

  • Yu, Sheng;Zhang, Baoxian;Yao, Zheng;Li, Cheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.12
    • /
    • pp.5442-5463
    • /
    • 2016
  • Designing efficient routing protocols for a wireless sensor network with mobile sinks (mWSN) is a challenging task since the network topology and data paths change frequently as sink nodes move. In this paper, we design a novel lightweight reactive ring based routing protocol called R3, which removes the need of proactively maintaining data paths to mobile sinks as they move in the network. To achieve high packet delivery ratio and low transmission cost, R3 combines ring based forwarding and trail based forwarding together. To support efficient ring based forwarding, we build a ring based structure for a network in a way such that each node in the network can easily obtain its ring ID and virtual angle information. For this purpose, we artificially create a virtual hole in the central area of the network and accordingly find a shortest cycled path enclosing the hole, which serves as base ring and is used for generating the remaining ring based structure. We accordingly present the detailed design description for R3, which only requires each node to keep very limited routing information. We derive the communication overhead by ring based forwarding. Extensive simulation results show that R3 can achieve high routing performance as compared with existing work.

The Development of Jumping Ring with Sensor System and Design of Dynamic Neural Controller (점핑링 및 센서 시스템 개발과 동적 신경망 제어기 설계)

  • Park, Seong-Wook;Kwon, Ki-Jin;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.540-542
    • /
    • 1999
  • We develop jumping ring system with sensor and control system using dynamic neural networks. Jumping ring, sensor and control system are controlled by 586 PC using Turbo C program. Sensor system is composed of 20 optical sensors and encoder. The control circuits are consisted of thyristor, FET and phase controller. A/D converter and optical sensor acquire real time motion data of the jumping ring system. The information of acquired jumping ring Position is estimated by using dynamic neural networks. Estimated control signals are sent to control circuits and D/A converter to track desired position of the jumping ring system. Experiment results are given to verify that proposed dynamic controller is useful in real jumping ring system.

  • PDF

Development of an Educational System and Real Time Nonlinear Control (II) (교육용 시스템 개발과 실시간 비선형 제어(II))

  • 박성욱
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.51 no.12
    • /
    • pp.571-576
    • /
    • 2002
  • This paper is to develop jumping ring system with three sensor arrays and to control levitated ring using dynamic neural mode. Placing an aluminum ring on the core and switching on an AC source causes the ring to jump in the air due to induced currents. The educational system is composed of 40th optical sensor array, encode circuit, 89C51 microprocessor and control board. The control board consists of power IC, and phase controller. Real time process is present to obtain a height of levitated ring for three different sensor arrays. Based on the educational system and the proposed dynamic neural mode, the height of levitation of the ring is controlled by reference signals. This paper focuses on real system controls using the dynamic neural mode with on line learning algorithm.

An Identity-based Ring Signcryption Scheme: Evaluation for Wireless Sensor Networks

  • Sharma, Gaurav;Bala, Suman;Verma, Anil K.
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.2 no.2
    • /
    • pp.57-66
    • /
    • 2013
  • Wireless Sensor Networks consist of small, inexpensive, low-powered sensor nodes that communicate with each other. To achieve a low communication cost in a resource constrained network, a novel concept of signcryption has been applied for secure communication. Signcryption enables a user to perform a digital signature for providing authenticity and public key encryption for providing message confidentiality simultaneously in a single logical step with a lower cost than that of the sign-then-encrypt approach. Ring signcryption maintains the signer's privacy, which is lacking in normal signcryption schemes. Signcryption can provide confidentiality and authenticity without revealing the user's identity of the ring. This paper presents the security notions and an evaluation of an ID-based ring signcryption scheme for wireless sensor networks. The scheme has been proven to be better than the existing schemes. The proposed scheme was found to be secure against adaptive chosen ciphertext ring attacks (IND-IDRSC-CCA2) and secure against an existential forgery for adaptive chosen message attacks (EF-IDRSC-ACMA). The proposed scheme was found to be more efficient than scheme for Wireless Sensor Networks reported by Qi. et al. based on the running time and energy consumption.

  • PDF

Design of a Multimode Type Ring Vector Sensor (다중 모드형 링 벡터 센서의 설계)

  • Lim, Youngsub;Joh, Cheeyoung;Seo, Heeseon;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.6
    • /
    • pp.484-493
    • /
    • 2013
  • Typical underwater acoustic sensors can measure the scalar quantity of sound-pressure-magnitude with the limitation of being unable to identify the direction of an incoming wave. This paper proposes a method to detect the direction of the sound wave with a ring sensor. The sensor of the proposed structure has a piezoceramic ring divided into eight elements, and distinguishes the direction of the sound wave by properly combining the output voltages of the piezoceramic elements. Further, through the analysis of the effects of the structural parameters like the ring radius and length, and piezoceramic thickness, we have suggested the way to improve the sensitivity of the vector sensor.

Design of CMOS Temperature Sensor Using Ring Oscillator (링발진기를 이용한 CMOS 온도센서 설계)

  • Choi, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.9
    • /
    • pp.2081-2086
    • /
    • 2015
  • The temperature sensor using ring oscillator is designed by 0.18㎛ CMOS process and the supply voltage is 1.5volts. The temperature sensor is designed by using temperature-independent and temperature-dependent ring oscillators and the output frequency of temperature-independent ring oscillator is constant with temperature and the output frequency of temperature-dependent ring oscillator decreases with increasing temperature. To convert the temperature to a digital value the output signal of temperature-independent ring oscillator is used for the clock signal and the output signal of temperature-dependent ring oscillator is used for the enable signal of counter. From HSPICE simulation results, the temperature error is less than form -0.7℃ to 1.0℃ when the operating temperature is varied from -20℃ to 70℃.

A 2.4 GHz Low-Noise Coupled Ring Oscillator with Quadrature Output for Sensor Networks (센서 네트워크를 위한 2.4 GHz 저잡음 커플드 링 발진기)

  • Shim, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.2
    • /
    • pp.121-126
    • /
    • 2019
  • The voltage-controlled oscillator is one of the fundamental building blocks that determine the signal quality and power consumption in RF transceivers for wireless sensor networks. Ring oscillators are attractive owing to their small form factor and multi-phase capability despite the relatively poor phase noise performance in comparison with LC oscillators. The phase noise of a ring oscillator can be improved by using a coupled structure that works at a lower frequency. This paper introduces a 2.4 GHz low-noise ring oscillator that consists of two 3-stage coupled ring oscillators. Each sub-oscillator operates at 800 MHz, and the multi-phase signals are combined to generate a 2.4 GHz quadrature output. The voltage-controlled ring oscillator designed in a 65-nm standard CMOS technology has a tuning range of 800 MHz and exhibits the phase noise of -104 dBc/Hz at 1 MHz offset. The power consumption is 13.3 mW from a 1.2 V supply voltage.

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Performance Obstacle Detection Using Effective Beam Overlap (효과적인 빔 폭 중첩을 이용한 고성능 장애물 탐지용 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.12 no.1
    • /
    • pp.67-75
    • /
    • 2011
  • This paper presents the systematic optimal design of an overlapped ultrasonic sensor ring for high performance obstacle detection using effective beam overlap. Basically, a set of low directivity ultrasonic sensors of the same type are arranged in a circle at regular intervals with their beams overlapped. First, both real and simplified beam patterns of an ultrasonic sensor and several sensor models for obstacle position estimation within its beam pattern are introduced. Second, the obstacle detection range of an overlapped ultrasonic sensor ring and its simple sensor model for obstacle position estimation are described. Third, for both conic and non-conic shaped beam pattern, the design indices of an overlapped ultrasonic sensor ring for minimal positional uncertainty in obstacle detection are defined. Fourth, the constraints imposed on the structural parameters of an overlapped ultrasonic sensor ring to guarantee non empty beam overlap and to avoid excessive beam overlap are derived. Fifth, the optimal number of ultrasonic sensors for a given radius of an overlapped ultrasonic sensor ring and the optimal radius of an overlapped ultrasonic sensor ring are determined. Throughout this paper, the MA40B8 from Murata Inc. is taken as a representative commercial low directivity ultrasonic sensor.

Detection of Levitated Ring using Photo Sensor and Construct of an Education System (광센서를 이용한 점핑링의 위치검출과 교육용 시스템 제작)

  • Park, Seong-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.6
    • /
    • pp.365-370
    • /
    • 2002
  • The jumping ring apparatus described in this study is used to demonstrate and educate the effects of electromagnetic induction. Placing an aluminum ring over the core and switching on AC source causes the ring to jump in the air due to induced currents in the ring producing a magnetic field opposed to that produced in the core. This force is a function of flux density, ac current of ring and levitated height of the ring. Using photo sensor arrays, detect the ring position and represent the position of the ring to analog voltage for an education performance. This paper presents modelling of the jumping ring system and shows how does control signal generate in order to follow desired position.