• Title/Summary/Keyword: rim region

Search Result 247, Processing Time 0.029 seconds

Effect of overpressurization on rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.67-73
    • /
    • 1997
  • By introducing the concept of overpressurization of rim pores due to dislocation punching, the total pressure exerted on the rim pores is estimated. Then this concept is combined with the assumption that all the fission gases produced in the rim region are retained in the rim region to calculate the rim porosity. Rim porosities calculated in this way are compared with measured data, which produces reasonable agreement. Finally a correlation for the thermal conductivity of the rim region is obtained using the hypothesis that the rim region consists of pores and fully dense material of UO$_2$.

  • PDF

Proposal and Analysis of Characteristics of a Refractive Index Modulated Distributed Feedback Laser Diode (Refractive Index Modulated Distributed Feedback Laser Diode의 제안과 특성해석)

  • 김홍국;이홍석;김부균;김병호
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.88-98
    • /
    • 1999
  • A refractive index modulated (RIM) DFB laser, in which the refractive index of a center region of the upper cladding layer comprising the grating region is different from that of side regions, is proposed to obtain and effective ${\lambda}$/4 phase shift in the center region. Since the coupling coefficient of a center region in a RIM-DFB laser is larger than that of side regions, a RIM-DFB laser has the effect of a distributed coupling coefficient. Simulation results show that RIM-DFB lasers have better operation characteristics - more uniform photon density profile, less SHB effect, and better single mode operation at high injection currents - compared to those of ${\lambda}$/4 phase-shifted DFB lasers and CPM-DFB lasers. In addition, the effect of the center region on the above threshold characteristics of a RIM-DFB laser is investigated.

  • PDF

Modelling of Thermal Conductivity for High Burnup $UO_2$ Fuel Retaining Rim Region

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.29 no.3
    • /
    • pp.201-210
    • /
    • 1997
  • A thermal conductivity correlation has been proposed which can be applied to high turnup fuel by considering both of thermal conductivity with turnup across fuel pellet and additional degradation at pellet rim due to very high porosity. In addition, a correlation has been developed that can estimate the porosity of rim region as a function of rim burnup under the assumptions that all the produced fission gases are retained in the in porosity and threshold pellet average burnup required for the formation of rim region is 40 MWD/㎏U. Rim width is correlated to rim burnup using measured data. For the RISO experimental data obtained at pellet average turnup of 43.5 MWD/㎏U for three linear heat generation rates of 30, 35 and 40 ㎾/m, radial temperature distributions ore calculated using the present correlation and compared with the measured ones. This comparison shows that the present correlation gives the best agreement with the measured data when it is combined with the HALDEN's correlation for thermal conductivity considering its degradation with burnup. Another comparison with the HALDEN's measured fuel centerline temperature as a function of burnup at 25 ㎾/m up to about 44 MWD/㎾U also suggest that the present correlation yields the best agreement when it is combined with the HALDEN's thermal conductivity.

  • PDF

Simulation of Pore Interlinkage in the Rim Region of High Burnup $UO_2$Fuel

  • Koo, Yang-Hyun;Oh, Je-Yong;Lee, Byung-Ho;Cheon, Jin-Sik;Joo, Hyung-Koo;Sohn, Dong-Seong
    • Nuclear Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • Threshold porosity above which fission gas release channels would be formed in the rim egion of high burnup UO$_2$ fuel was estimated by the Monte Carlo method and Hoshen-Kopelman algorithm. With the assumption that both rim pore and rim grain can be represented by cube, pore distribution in the rim was simulated 3-dimensionally by the Monte Carlo method according to porosity and pore size distribution. Then, using the Hoshen-Kopelman algorithm, the fraction of open rim pores interlinked to the outer surface of a fuel pellet was derived as a function of rim porosity. The simulation showed that porosity of 24-25% is the threshold above which the number of rim pores forming release channels increases very rapidly. On the other hand, channels would not be formed if the porosity is less than about 23.5%. This is consistent with the observation that, for porosity less than 23.5%, almost no fission gas is released in the rim. However, once the rim porosity reaches beyond 25%, extensive open paths would be developed and considerable fission gas release would start in the rim.

SHIELDED LASER ABLATION ICP-MS SYSTEM FOR THE CHARACTERIZATION OF HIGH BURNUP FUEL

  • Ha, Yeong-Keong;Han, Sun-Ho;Kim, Hyun-Gyum;Kim, Won-Ho;Jee, Kwang-Yong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.311-318
    • /
    • 2008
  • In modem power reactors, nuclear fuels have recently reached 55,000 MWd/MtU from the initial average burnup of 35,000 MWd/MtU to reduce the fuel cycle cost and waste volume. At such high burnups, a fuel pellet produces fission products proportional to the burnup and creates a typical high burnup structure around the periphery region of the pellet, producing the so called 'rim effect'. This rim region of a highly burnt fuel is known to be ca. $200\;{\mu}m$ in width and is known to affect the fuel integrity. To characterize the local burnup in the rim region, solid sampling in the micro meter region by laser ablation is needed so that the distribution of isotopes can be determined by ICP-MS. For this procedure, special radiation shielding is required for personnel safety. In this study, we installed a radiation shielded laser ablation ICP-MS system, and a performance test of the developed system was conducted to evaluate the safe operation of instruments.

Threshold burnup for recrystallization and model for rim porosity in the high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.279-284
    • /
    • 1998
  • Applicability of the threshold burnup for rim formation was investigated as a function of temperature by Rest's model. The threshold burnup was the lowest in the intermediate temperature region, while on the other temperature regions the threshold burnup is higher. The rim porosity was predicted by the van der Waals equation based of the rim pore radius of 0.75${\mu}{\textrm}{m}$ and the overpressurization model on rim pores. The calculated centerline temperature is in good agreement with the measured temperature. However, more efforts seem to be necessary for the mechanistic model of the rim effect including rim growth with the fuel burnup.

  • PDF

Stability of Attached Flame in $H_2$/CO Syngas Non-premixed Turbulent Jet Flame ($H_2$/CO 합성가스 비예혼합 난류 제트화염에서 부착화염의 화염안정화)

  • Hwang, Jeong-Jae;Bouvet, Nicolas;Sohn, Ki-Tae;Yoon, Young-Bin
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.22-29
    • /
    • 2012
  • The detachment stability characteristics of syngas $H_2$/CO jet attached flames were studied. The flame stability was observed while varying the syngas fuel composition, coaxial nozzle diameter and fuel nozzle rim thickness. The detachment stability limit of the syngas single jet flame was found to decrease with increasing mole fraction of carbon monoxide in the fuel. In hydrogen jet flames with coaxial air, the flame detachment stability was found to be independent of the coaxial nozzle diameter. However, velocities of appearance of liftoff and blowout velocities of lifted flames have dependence. At lower fuel velocity range, the critical coaxial air velocity leading to flame detachment increases with increasing fuel jet velocity, whereas at higher fuel velocity range, it decreases. This increasing-decreasing non-monotonic trend appears for all $H_2$/CO syngas compositions (50/50~100/0% $H_2$/CO). To qualitatively understand the flame behavior near the nozzle rim, $OH^*$ chemiluminescence imaging was performed near the detachment limit conditions. For all fuel compositions, local extinction on the rim is observed at lower fuel velocities(increasing stability region), while local flame extinction downstream of the rim is observed at higher fuel velocities(decreasing stability region). Maximum values of the non-monotonic trends appear to be identical when the fuel jet velocity is normalized by the critical fuel velocity obtained in the single jet cases.

An Experimental Study on Flame Stability and Combustion Characteristics of Coaxial Diffusion Flame (동축분류 확산화염에서 화염안정화와 연소특성에 관한 연구)

  • 유현석;오신규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.509-518
    • /
    • 1995
  • A study for the flame stability and the combustion characteristics of coaxial diffusion flame was conducted. The fuel employed was natural gas. The experimental variables were rim thickness of fuel tube, blockage ratio of the outer diameter of fuel tube to the inner diameter of air tube, and momentum ratio of fuel to air. It was consequently found that the stability in the neighborhood of the fuel rim depended on the rim thickness, especially in the case of above 3 mm, and that the stable region of the flame extended remarkably due to the formation of recirculation zone above rim. The effect of the blockage ratio on the flame stability was found to be minor in the case of above 3 mm of rim thickness. Between the momentum ratio 2 and 3, the stable flame zone was widely established as well good combustion. With increasing the fuel-air momentum ratio, axial velocity, turbulence intensity, and Reynolds stress increased.

A Study on the Round Clay Rim Pottery Culture in Kangwon Region (강원지역의 점토대토기문화 고찰)

  • Lee, Suk-Im
    • KOMUNHWA
    • /
    • no.69
    • /
    • pp.63-89
    • /
    • 2007
  • The Archaeological sites of so called Round Clay Rim Pottery (Jeomtodaetogi : 점토대토기) culture in Kangwon region have been rarely excavated in proper form. Since most cases belong to those of ground surface gatherings, it is difficult to certify the nature and the association with other artifacts. Therefore, researches on that culture have been limited to simply set the chronological order in the Bronze Age in realtion with the Plain Pottery culture. However, a comparative study trying to explain the Round Clay Rim Pottery culture in both Yeongseo(영서) and Yeongdong(영동) has become possible thanks to recent excavation results from the sites of Chilgeon-dong(칠전동) in Chunchon City(춘천시) and Songrim-ri(송림리) in Kangneung City(강릉시), for example. Certain difference can be observed in form and amount of artifacts in between Yeongseo and Yeongdong. Such difference can be seen as individual localization in different places diffused from a common source, rather than showing different stages of unilineal developmental process of one culture. The Round Clay Rim Pottery culture seems to have been coexisted with the Rim-Perforated Pottery(공렬토기) and Dolmen(지석묘) culture. According to the radiocarbondatings, the upper time limit of the Round Clay Rim Pottery culture goes back considerably beyond the alleged upper limit of either the late fourth century or the second century B.C.. However, both cultures absorbed into the Iron Culture during the same period.

  • PDF

A BRIGHT RIM OF SOLAR FILAMENT OBSERVED BY USING FISS

  • Yang, Hee-Su;Chae, Jong-Chul;Song, Dong-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • Bright rims are one of the most unknown part of a filament nowadays. Many models tried to explain the environments, but there is no commonly acceptable model. Many survey observations have been performed to find various characteristics of the bright rim statistically, but there was only one spectroscopic observation to understand phenomena of the bright rim. We observed a bright rim on June 25, 2010 using FISS installed in NST, Big Bear Solar observatory. FISS can obtain a couple of wavebands data simultaneously with short time cadence and fine resolution(~ 0.1", expected) with Adaptive Optics. By applying the cloud model, we found source function, optical thickness, temperature and non-thermal velocity of the region from the spectra of Ha and CaII 8542 lines. We discuss the physical implication of these measurements on the nature of bright rims of filaments.

  • PDF