• Title/Summary/Keyword: rigidity

Search Result 1,453, Processing Time 0.029 seconds

Buckling Characteristics of Rigidly-jointed Single-Layer Latticed Domes with Square Network -Comparison between Experiment and Analysis- (사각형네트워크 단층래티스돔의 좌굴특성 -실험과 이론과의 비교-)

  • Jung, Hwan Mok
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.3 s.36
    • /
    • pp.463-472
    • /
    • 1998
  • The purpose of this paper is to analyze the buckling characteristics of rigidly-jointed single-layer latticed domes with square network by using the experimental and the theoretical techniques in order to develop a reasonable method of theoretical analysis for these domes. Two methods of theoretical analysis are applied; one is based on the Yamada's method of shell analogy and the other is based on the frame analysis method using the finite element method. The effects of the nonuniformity of rigidity-distribution in the circumferential direction and the rigidity of the covering material on both the prebuckling and the buckling characteristics are examined. The results indicate that these effects should be considered reasonably in the theoretical analyses.

  • PDF

Flexural behavior and resistance of uni-planar KK and X tubular joints

  • Chen, Yiyi;Wang, Wei
    • Steel and Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.123-140
    • /
    • 2003
  • The importance of the research on moment-resistant properties of unstiffened tubular joints and the research background are introduced. The performed experimental research on the bending rigidity and capacity of the joints is reported. The emphasis is put on the discussion of the flexural behavior of the joints including sets of geometrical parameters of the joints and several loading combinations. Procedures and results of loading tests on four full size joints in planar KK and X configuration are described in details at first. Mechanical models are proposed to analyze the joint specimens. Three-dimensional nonlinear FE models are established and verified with the experimental results. By comparing the experimental data with the results of the analysis, it is reported reasonable to carry out the structural analysis under the assumption that the joint is fully rigidly connected, and their bending capacities can assure the strength of the members connected under certain limitation. Furthermore, a parametric formula for inplane bengding rigidity of T and Y type tubular joints is proposed on the basis of FE calculation and regression analysis. Compared with test results, it is shown that the parametric formula developed in this paper has good applicability.

Critical Load and Effective Buckling Length Factor of Dome-typed Space Frame Accordance with Variation of Member Rigidity (돔형 스페이스 프레임의 부재강성변화에 따른 임계좌굴하중과 유효좌굴길이계수)

  • Shon, Su-Deok;Lee, Seung-Jae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.13 no.1
    • /
    • pp.87-96
    • /
    • 2013
  • This study investigated characteristics of buckling load and effective buckling length by member rigidity of dome-typed space frame which was sensitive to initial conditions. A critical point and a buckling load were computed by analyzing the eigenvalues and determinants of the tangential stiffness matrix. The hexagonal pyramid model and star dome were selected for the case study in order to examine the nodal buckling and member buckling in accordance with member rigidity. From the numerical results, an effective buckling length factor of adopted models was bigger than that of Euler buckling for the case of fixed boundary. These numerical models indicated that the influence of nodal buckling was greater than that of member buckling as member rigidity was higher. Besides, there was a tendency that the bifurcation appeared on the equilibrium path before limit point in the member buckling model.

Prediction of Deflection of Reinforced Concrete Beams due to Creep (크리프에 의한 철근콘크리트 보의 처짐 예측)

  • 이상순;김용빈;김진근;이수곤
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.253-260
    • /
    • 1998
  • An approximate method for the calculation of creep deflections of reinforced concrete beams under sustained service loads is proposed. The position of neutral axis and strain and stress distribution of fully cracked section after creep is determined from the requirements of strain compatibility and equilibruim of a section and then the long-term flexural rigidity of fully cracked section is determined based on the new neutral axis. The long-term flexural rigidity of uncracked section at the level of the reinforcenment. The approach of calculating long-term effective flexural rigidity and defections is similar to the current American Concrete Institue procedure for calculating effecitve moment of inertia and short-term deflections. The accuracy of the analysis is verified by comparison with several experimental mesurements of beam deflectons. The result is good between the theotetical values and mesured valus.

Numerical investigation of buckling strength of longitudinally stiffened web of plate girders subjected to bending

  • Kim, Hee Soon;Park, Yong Myung;Kim, Byung Jun;Kim, Kyungsik
    • Structural Engineering and Mechanics
    • /
    • v.65 no.2
    • /
    • pp.141-154
    • /
    • 2018
  • In this study, the bend-buckling strength of the web in longitudinally stiffened plate girder was numerically investigated. The buckling strength of the reinforced web was evaluated through an eigenvalue analysis of the hypothetical model, in which the top and bottom junctions of the web to the flanges were assumed as simple support conditions. Major parameters in the analysis include asymmetrical cross-sectional property, aspect ratio of the web, stiffener locations, and bending rigidity of the stiffeners. The numerical results showed that current AASHTO LRFD specifications (2014) provides the buckling strength from considerably safe side to slightly unsafe side depending on the location of the stiffeners. A modified equation for buckling coefficients was proposed to solve the shortcomings. The bending rigidity requirements of longitudinal stiffeners stipulated in AASHTO were also investigated. It is desirable to increase the rigidity of the stiffeners when the aspect ratio is less than 1.0.

A Study of the In-plane Rigidity of a Compressed Ship Plate above Buckling Load (압축하중을 받는 선체판의 좌굴후 면내강성에 관한 연구)

  • 고재용;박성현;박주신
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.11a
    • /
    • pp.107-112
    • /
    • 2002
  • Basically, ship structure consists of the plate members, and a strength of overall ship structurnds on the stiffness and strength of ship platings. If buckling which causes to deflect ship plate members occurs, the stiffness of ship plate markedly decreases, and thus buckling has a serious effect on the stiffness or strength of overall ship structure. Buckling is one of the most important design criteria when we scantle structure members. In the present study, a inplane rigidity of a compressed ship plate above buckling load is proposed. The proposed inplane rigidity is available in the elastic or elasto-Plastic ranges in order to can out a more efficient and reliable design.

  • PDF

An Analytical Study on the Behavior of Steel Frames with Semi-Rigidity of Beam-to-Column Connections (반강접 접합부를 갖는 강골조의 거동에 대한 해석적 연구)

  • Kim, Jong Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.551-559
    • /
    • 2003
  • In steel frames, the analysis and design techniques are based on either idealized fixed or pinned connections. In this case, it has the advantage that the structural analysis and the design procedure were simplified, but there could be given different results of analysis between the real steel frame connections and the idealized fixed and pinned connection. This is because the real connections would be analyzed by semi-rigid, and have some transfer of moment and rotational constraint about the loads. In this study, structural analysis program with considered connections that have joint rigidity of fixed, pinned and semi-rigid, was developed. Then, the effects of joint rigidity on strength and displacement. in steel frames subjected to lateral forces and axial forces, were investigate, and the results were compared with those of the Midas Gen. w program.

The Properties for Structural Behavior of Beam-Column Joint Consisting of Composite Structure (혼합구조로 이루어진 보-기둥 접합부의 구조적 거동 특성)

  • Lee, Seung Jo;Park, Jung Min;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.445-455
    • /
    • 2000
  • This study proposed to beam-column joint model consisting of different type structural member to develop new structural system in the structural viewpoint as to a method to overcome various problem according to change of construction environment. This study promoted rigidity and capacity to stiffen reinforced concrete for steel structure end to increase rigidity of long spaned steel beam, and welt to steel flange to anchor U-shaped main bar of SRC structure end to easy stress flow between the different type structure. Through the series of experiments, proposed to possibility of this joint model, and investigated joint rigidity and capacity.

  • PDF

Mechanical Properties and Garment Formability of PET/Spandex Stretch Fabrics (PET/스판덱스 스트레치 직물의 역학특성과 의류형성성능)

  • Kim, Hyunah
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.41 no.6
    • /
    • pp.1098-1108
    • /
    • 2017
  • This paper investigated stretchability with fabric mechanical properties of one-way and two-way stretch fabrics. For this purpose, 1-way and 2-way woven fabrics were prepared using 150d PET/spandex covered yarns with different thermal treatment according to 4 kinds of wet thermal machines subsequently, fabric mechanical properties were measured and compared with regular PET fabrics. In addition, the garment formability of stretch fabrics was predicted and compared to regular fabrics according to wet thermal treatment. The weft stretchability of 2-way stretch fabric was about 10% higher than the 1-way stretch fabric. The compressibility of the stretch fabrics was 1.5 times higher than regular fabrics. The compressibility of stretch fabrics treated with CPB and rope type wet thermal machine showed higher values than other types of wet thermal machines. The bending rigidity of 2-way stretch fabric was lower than 1-way stretch fabric. Shear rigidity of 2-way stretch fabric was higher than 1-way and regular fabrics. Garment formability of 2-way stretch fabric was higher than regular and one-way stretch fabrics. Garment formability of 2-way stretch fabrics treated with wet thermal conditions under low tension showed the highest values.

Mechanical Properties of Woven Fabrics Made from Thick & Thin Yarn (태세사(Thick & Thin Yarn)로 제작된 직물의 역학적 특성)

  • Shin Hyun-Sae;Kim Young-Sang;Son Jun-Sik
    • Textile Coloration and Finishing
    • /
    • v.18 no.2 s.87
    • /
    • pp.39-45
    • /
    • 2006
  • The aim of this work is to develop sense-differentiated textiles using Thick-Thin polyester yarn(T-T yarn) with finer than 1 denier mono filament. The ITY(Interlace Textured Yarn) using T-T yarn with various over feed ratios of PET filament was manufactured with different shrinking percentage of core yarn and then the fabrics were woven on the same weaving 100m using ITY produced. The mechanical properties and the handles of the fabrics were examined with KES-FB system suggested by Kawabata. The shrinkage of ITY was increased with decreasing over feed ratio and increased with increasing heat treatment temperature of T-T yarn. The initial elasticity modulus of ITY was decreased with increasing over feed ratio and heat treatment temperature of T-T yarn. The tensile energy of fabrics was decreased with increasing of over feed ratio, but bending rigidity and shear rigidity of fabrics were increased with increasing of over feed ratio of PET filament. The results indicate that the fabric using T-T yarn with finer than I denier mono filament can be used for the purpose of sense-differentiated textile.