• Title/Summary/Keyword: rigid-connection

Search Result 272, Processing Time 0.026 seconds

A Study on Connection Ductility of Steel Structures Subjected to Monotonic Loading (단조하중을 받는 철골구조물의 접합부 연성도에 관한 연구)

  • Kang, Suk-Bong;Kim, Jin-Hyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.375-385
    • /
    • 2000
  • The required connection ductility has been evaluated, considering geometric, material and connection nonlinearity, for 6-story unbraced and 20-story braced steel structures subjected to ultimate lateral load. For material nonlinearity, section moment-curvature relationship and member stiffness matrix have been derived utilizing fiber model and linear flexibility distribution model. In 6-story structure with semi-rigid connections for rigid connection, the required connection ductility is less than that for rigid connection. In 20-story structure, the required connection ductility for semi-rigid connection is almost the same as that for shear connection and the required ductility for rigid connection is larger than that for semi-rigid or shear connection.

  • PDF

Experimental study of rigid beam-to-box column connections with types of internal/external stiffeners

  • Rezaifar, Omid;Nazari, Mohammad;Gholhaki, Majid
    • Steel and Composite Structures
    • /
    • v.25 no.5
    • /
    • pp.535-544
    • /
    • 2017
  • Box sections are symmetrical sections and they have high moment of inertia in both directions, therefore they are good members in tall building structures. For the rigid connection in structures with box column continuity plates are used on level of beam flanges in column. Assembly of the continuity plates is a difficult and unreliable work due to lack of weld or high welding and cutting in the fourth side of column in panel zone, so the use of experimental stiffeners have been considered by researchers. This paper presented an experimental investigation on connection in box columns. The proposed connection has been investigated in four cases which contain connection without internal and external stiffeners(C-0-00), connection with continuity plates(C-I-CP), connection with external vase shape stiffener (C-E-VP) and connection with surrounding plates(C-E-SP). The results show that the connections with vase plates and surrounding plates can respectively increase the ultimate strength of the connection up to 366% and 518% than the connection without stiffeners, in case connection with the continuity plates this parameter increases about 39%. In addition, the proposed C-E-VP and C-E-SP connection provide a rigid and safe connection to acquire rigidity of 95% and 98% respectively. But C-I-CP connection is classified as semi-rigid connections.

A STUDY OF PHOTOELASTIC STRESS ANALYSIS IN THE IMZ IMPLANT-NATURAL 700TH SUPPORTED FIXED PARTIAL DENTURE USING ATTACHMENT WITH OR WITHOUT RIGID CONNECTION (어태치먼트를 이용한 IMZ 임플랜트와 자연치의 연결시 고정유무의 연결형태에 따른 광탄성 응력분석에 관한 연구)

  • Kim, Jeong-Sun;Hwang, Young-Phil;Kay, Kee-Sung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.33 no.1
    • /
    • pp.130-143
    • /
    • 1995
  • The purpose of this study was to analyze the magnitude and distribution of stress using photoelastic model with the rigid connection using T-block attachment and non-rigid connection using key & keyway attachment. The vertical load of 16 Kg was applied on the central fossa of the tooth, the pontic and the implant, and the pattern and distribution under each condition was analyzed. The following results were obtained : 1. In case of vertical load on the central fossa of the implant, the stress was concentrated at the apex of the implant involving the mesial alveolar bone in both fixed partial denture with the rigid connection and that with the nonrigid connection and the stress concentration at the mesial cervical area of the implant was a little more in the nonrigid connection than in the rigid connection. 2. In case of vertical load on the central fossa of the pontic, the stress was concentrated at the apex of 2nd bicuspid in both 3 unit fixed partial denture with nonrigid connection and that with the rigid connection. The stress was more concentrated at the mesial alveolar bone of the implant, but the stress distribution at the natural teeth more favorable at the rigid connection than at the non-rigid connection in case of 4 unit fixed partial denture. 3. In case of vertical load of the central fossa of the 2nd bicuspid, much stress with 3 fringe order was observed at the apex of the 2nd bicuspid in the 3 unit fixed partial denture, but relatively even stress distribution was observed at the apex of the implant, the 1st and 2nd bicuspid, and the adjacent cuspid in the 4 unit fixed partial denture.

  • PDF

Second-Order Elastic Analysis and Optimum Design Considering Semi-Rigid Connection for Steel Structures (반강접 접합부를 고려한 철골 구조물의 2차 탄성 해석 및 최적설계)

  • Gu, Bon-Ryul;Park, Choon-Wook;Kang, Sung-Won;Kang, Moon-Myung
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.1 s.7
    • /
    • pp.35-46
    • /
    • 2003
  • Conventional analysis and design of steel structures are performed using the assumption of a either fully rigid or pinned. However, every steel connection lies in between fully rigid and pinned connection. So, It is important to consider the connection for steel structure design. In this paper Computer-based second-order elastic analysis is used to calculate one story two bay and two story three bay for steel structures with semi-rigid connection. Genetic Algorithms(GAs) and Sequential Unconstrained Minized Technique(SUMT) dynamic programming is used to the method for optimum design of steel structures. The efficiency and validity of the developed continuous and discrete optimum design algorithm was verified by applying the algorithm to optimum design examples.

  • PDF

Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity

  • Bayat, Mohammad;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2017
  • Seismic performance of hybrid steel frames defined as mixture of rigid and semi-rigid connections is investigated in this paper. Three frames with 10, 15 and 20 stories are designed with fully rigid connections and then with 4 patterns for semi-rigid connection placement, some of beam to column rigid connections would turn to semi-rigid. Each semi-rigid connection is considered with 4 different moment capacities and all rigid and semi-rigid frames consisting of 51 models are subjected to 5 selected earthquake records for nonlinear analysis. Maximum story drifts, roof acceleration and base shear are extracted for those 5 earthquake records and average values are obtained for each case. Based on numerical results for the proposed hybrid frames, story drifts remain in allowable range and the reductions in the maximum roof acceleration of 22, 29 and 25% and maximum base shear of 33, 31 and 54% occur in those 10, 15 and 20-story frames, respectively.

Effects of RHS face deformation on the rigidity of beam-column connection

  • Hadianfard, M.A.;Rahnema, H.
    • Steel and Composite Structures
    • /
    • v.10 no.6
    • /
    • pp.489-500
    • /
    • 2010
  • The rigid connections of I-beams to Rectangular Hollow Sections (RHS) in steel structures usually behave as semi-rigid connection. This behavior is directly related to the column face deformation. The deformation in the wall of RHS column in the connection zone causes a relative rotation between beam end and column axis, which consequently reduces the rigidity of beam-column connection. In the present paper, the percentages of connection rigidity reduction for serviceability conditions are evaluated by using the finite element analysis. Such percentages for RHS columns without internal stiffeners are considerable, and can be calculated from presented graphs.

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

Development of the Nonlinear Structural Analysis Model for the Light-Weight Framed Structures (II) (경량형강 시설물의 비선형 구조해석 모델개발(II) -반강결 뼈대구조물의 해석에 대하여-)

  • 김한중;이정재
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.1
    • /
    • pp.78-87
    • /
    • 1998
  • In this study, semi-rigid light-weight framed structures analysis model (SERIFS) was developed by advancing the LEIFS model. This model enables us to analyze simultaneous effects of large deflection and semi-rigid connection by computing unbalanced load occurring in the process of repeated loading through equalization of bending moments and torsion. This model is also able to handle the effect of the semi-rigid connection and large deflection by modifying the elastic stiffness matrix using moment-rotation behavior of connection. Moment-rotation behavior of the semi-rigid connection was adopted from the experimental results of load-vertical displacement of frame element In conclusion, this model achieves to analyze the nonlinear and large deflection behavior on the semi-rigid and light-weight steel frame connection.

  • PDF

Inelastic Time History Analysis of an Unbraced 5-Story Steel Framed Structure for Arrangement of Semi-Rigid Connection (반강접 접합부 배치에 따른 비가새 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Kim, Sin-Ae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.313-324
    • /
    • 2010
  • In this study, an unbraced five-story steel-framed structure was designed in accordance with KBC2005 to understand the features of structural behavior for the arrangement of semi-rigid connections. An inelastic time history analysis of structural models was performed, wherein all the connections were idealized as fully rigid and semi-rigid. Additionally, horizontal and vertical arrangements of semi-rigid connections were used for the models. A fiber model was utilized for the moment-curvature relationship of a steel beam and a column, a three-parameter power model for the moment-rotation angle of the semi-rigid connection, and a three-parameter model for the hysteretic behavior of a steel beam, column, and connection. The base-shear force, top displacement, story drift, required ductility for the connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were investigated using four earthquake excitations with peak ground acceleration for a mean return period of 2,400 years and for the maximum base-shear force in the pushover analysis of a 5% story drift. The maximum base-shear force and story drift decreased with the outer vertical distribution of the semi-rigid connection, and the required ductility for the connection decreased with the higher horizontal distribution of the semi-rigid connection. The location of the maximum story drift differed in the pushover analysis and the time history analysis, and the magnitude was overestimated in the pushover analysis. The outer vertical distribution of the semi-rigid connection was recommended for the base-shear force, story drift, and required ductility for the connection.

A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( II ) (횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( II ) -골조 해석모형을 중심으로-)

  • Kang, Cheol Kyu;Han, Young Cheol;Lee, Gab Jo
    • Journal of Korean Society of Steel Construction
    • /
    • v.8 no.4 s.29
    • /
    • pp.121-131
    • /
    • 1996
  • Semi-rigid frames are frames for whcih the connections joining the beam and column are neither fully rigid nor perfectly pinned. In reality, all steel frames are semi-rigid in nature as all connections exhibit a certain degree of flexibility under loads. For semi-rigid frmaed structures, it is tended to reduce more rigidity of the member for the nonlinear behavior of connections and the P-delta effects of framed structure. To predict the actual behavior of semi-rigid steel frames, a more realistic analysis methods which explicitly takes into account the effect of connection flexibility should be used. In this research, the effect of connection flexibility in the semi-rigid structure has been investigated. To predict the response of flexibility connected frames, the algorithm of semi-rigid steel frame is developed using connection model having nonlinear spring on end of beam.

  • PDF