• 제목/요약/키워드: rigid pile composite foundation

검색결과 5건 처리시간 0.09초

Time effect of pile-soil-geogrid-cushion interaction of rigid pile composite foundations under high-speed railway embankments

  • Wang, Changdan;Zhou, Shunhua;Wang, Binglong;Guo, Peijun
    • Geomechanics and Engineering
    • /
    • 제16권6호
    • /
    • pp.589-597
    • /
    • 2018
  • Centrifuge model tests were used to simulate pile-raft composite foundation and pile-geogrid composite foundation with different pile spacing for researching the time effect of negative skin friction of rigid piles in high-speed railways. The research results show that the negative skin friction has a significant impact on the bearing capacity of composite foundation. Pile-raft composite foundation has higher bearing capacity compared to pile-geogrid composite foundation to reduce the effect of negative skin friction on piles. Both the foundation settlement and negative skin friction have significant time effect. The distribution of skin friction can be simplified as a triangle along the pile. The neutral point position moves deeper in the postconstruction stage at larger pile spacing. For pile-geogrid composite foundation, the setting of pile-cap affects the position of neutral point in the post-construction stage. Reinforced cushion with geotextile may promote the better performance of cushion for transmitting the loads to piles and surrounding soils. Arching effect in the cushion of the composite foundation is a progressive process. The compression of the rigid piles contributes less than 20% to 25% of the total settlement while the penetration of the piles and the compression of the bearing stratum below the pile tips contribute more than 70% of the total settlement. Some effective measures to reduce the settlement of soils need to be taken into consideration to improve the bearing capacity of pile foundation.

A foundation treatment optimization approach study in hydraulic engineering

  • Zhang, Tianye;Liu, Shixia
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.215-225
    • /
    • 2018
  • To reach a better foundation treatment project, an optimized analysis of composite foundation was studied in the field of hydraulic engineering. Its unique characteristics in hydraulic engineering were concluded. And, the overall and detailed analysis of the composite foundation model established was carried out. The index parameters of the vertical reinforced rigid pile composite foundation were formulated. Further, considering the unique role of cushion in hydraulic engineering, its penetration and regularity were analyzed. Then, comparative and optimized analyses of cushion multistage physical dimensions and multistage material characteristics were established. The parameters of the piles distance were optimized and the multilevel scientific and reasonable parameters information was obtained. Based on the information of these parameters, the practical application was verified. It effectively supported the effective application of vertical reinforcement rigid pile composite foundation in hydraulic engineering. The service mechanism of composite foundation was fully analyzed.

Effects of inclined bedrock on dissimilar pile composite foundation under vertical loading

  • Kaiyu, Jiang;Weiming, Gong;Jiang, Xu;Guoliang, Dai;Xia, Guo
    • Geomechanics and Engineering
    • /
    • 제31권5호
    • /
    • pp.477-488
    • /
    • 2022
  • Pile composite foundation (PCF) has been commonly applied in practice. Existing research has focused primarily on semi-infinite media having equal pile lengths with little attention given to the effects of inclined bedrock and dissimilar pile lengths. This investigation considers the effects of inclined bedrock on vertical loaded PCF with dissimilar pile lengths. The pile-soil system is decomposed into fictitious piles and extended soil. The Fredholm integral equation about the axial force along fictitious piles is then established based on the compatibility of axial strain between fictitious piles and extended soil. Then, an iterative procedure is induced to calculate the PCF characteristics with a rigid cap. The results agree well with two field load tests of a single pile and numerical simulation case. The settlement and load transfer behaviors of dissimilar 3-pile PCFs and the effects of inclined bedrock are analyzed, which shows that the embedded depth of the inclined bedrock significantly affects the pile-soil load sharing ratios, non-dimensional vertical stiffness N0/wdEs, and differential settlement for different length-diameter ratios of the pile l/d and pile-soil stiffness ratio k conditions. The differential settlement and pile-soil load sharing ratios are also influenced by the inclined angle of the bedrock for different k and l/d. The developed model helps better understand the PCF characteristics over inclined bedrock under vertical loading.

하중 및 기초조건에 따른 GCP 복합지반의 거동분석 (Analysis of Behavior on GCP Composite Ground Considering Loading and Foundation Conditions)

  • 김경업;박경호;김대현
    • 한국지반신소재학회논문집
    • /
    • 제17권1호
    • /
    • pp.127-137
    • /
    • 2018
  • 쇄석다짐말뚝(Gravel Compaction Pile, 이하 GCP)는 느슨한 사질토지반이나 연약한 점토지반에 쇄석을 다지고 압입하여 원지반에 말뚝을 조성함으로써 지반을 개량하는 공법이다. 국내 GCP공법은 많은 연구자들이 실내실험, 현장실험 등을 이용해 GCP 복합지반의 응력거동을 분석하였으나, GCP 복합지반의 상부에 재하되는 매트기초의 강성 차이에 따른 거동분석은 다소 미미한 실정이다. 따라서 본 연구에서는 수치해석을 통해 기초의 강성 차이에 따라 응력분담비를 규명하고자 하였다. 이를 위해 유한요소 해석프로그램인 ABAQUS를 이용하여 치환율을 변화시켜 모델링하고, 강성 차이에 따라 복합지반의 응력분담비와, 침하량 및 최대 수평변위량을 분석하였다. 분석 결과, 강성기초의 하중재하시 응력분담비는 연성기초의 하중재하보다 높게 평가되었으며, 연성하중재하조건에서의 침하량은 강성조건에서 보다 다소 높은 경향이 나타났다. 이는 상부기초의 강성 차이에 대한 응력거동 특성을 명확히 규명해야 할 필요성이 있다고 판단된다. 또한, 최대 수평변위는 강성의 차이에 상관없이 일정한 위치에서 최대 변위가 발생하였다.

Soil-structure-foundation effects on stochastic response analysis of cable-stayed bridges

  • Kuyumcu, Zeliha;Ates, Sevket
    • Structural Engineering and Mechanics
    • /
    • 제43권5호
    • /
    • pp.637-655
    • /
    • 2012
  • In this study, stochastic responses of a cable-stayed bridge subjected to the spatially varying earthquake ground motion are investigated by the finite element method taking into account soil-structure interaction (SSI) effects. The considered bridge in the analysis is Quincy Bay-view Bridge built on the Mississippi River in between 1983-1987 in Illinois, USA. The bridge is composed of two H-shaped concrete towers, double plane fan type cables and a composite concrete-steel girder deck. In order to determine the stochastic response of the bridge, a two-dimensional lumped masses model is considered. Incoherence, wave-passage and site response effects are taken into account for the spatially varying earthquake ground motion. Depending on variation in the earthquake motion, the response values of the cable-stayed bridge supported on firm, medium and soft foundation soil are obtained, separately. The effects of SSI on the stochastic response of the cable-stayed bridge are also investigated including foundation as a rigidly capped vertical pile groups. In this approach, piles closely grouped together beneath the towers are viewed as a single equivalent upright beam. The soil-pile interaction is linearly idealized as an upright beam on Winkler foundation model which is commonly used to study the response of single piles. A sufficient number of springs on the beam should be used along the length of the piles. The springs near the surface are usually the most important to characterize the response of the piles surrounded by the soil; thus a closer spacing may be used in that region. However, in generally springs are evenly spaced at about half the diameter of the pile. The results of the stochastic analysis with and without the SSI are compared each other while the bridge is under the sway of the spatially varying earthquake ground motion. Specifically, in case of rigid towers and soft soil condition, it is pointed out that the SSI should be significantly taken into account for the design of such bridges.