• Title/Summary/Keyword: ride safety

검색결과 156건 처리시간 0.021초

실측데이터에 의한 완화곡선 승차감 평가 (Analysis of Comfort on Transition Curve based on the Measured Data)

  • 최일윤
    • 한국산학기술학회논문지
    • /
    • 제16권5호
    • /
    • pp.3573-3578
    • /
    • 2015
  • 완화곡선구간은 직선과 곡선사이에 설치되는 구간이며, 곡선반경 및 캔트 등의 선형변화에 따라 차량의 횡방향 가속도, 횡방향 저크 및 롤속도의 변화가 발생하여 차량주행안전성 및 승차감 측면에서 취약구간이 된다. 본 논문에서는 철도차량의 차체횡가속도와 롤속도의 계측결과를 이용하여 완화곡선 구간의 승차감을 정량적으로 산정하였으며, 승차감 평가기법은 EN규격에서 제시하는 완화곡선 구간의 승차감 평가방법을 사용하였다. 평가결과로 부터 통하여 국내 일반철도 노선의 완화곡선구간 승차감의 분포특성을 조사하였으며, 곡선반경 크기와 차량 속도가 완화곡선 구간의 승차감에 미치는 영향을 분석하였다. 마지막으로, 캔트 시간변화율과 완화곡선 승차감의 관계를 분석하였다.

Assessment of ride safety based on the wind-traffic-pavement-bridge coupled vibration

  • Yin, Xinfeng;Liu, Yang;Chen, S.R.
    • Wind and Structures
    • /
    • 제24권3호
    • /
    • pp.287-306
    • /
    • 2017
  • In the present study, a new assessment simulation of ride safety based on a new wind-traffic-pavement-bridge coupled vibration system is developed considering stochastic characteristics of traffic flow and bridge surface. Compared to existing simulation models, the new assessment simulation focuses on introducing the more realistic three-dimensional vehicle model, stochastic characteristics of traffic, vehicle accident criteria, and bridge surface conditions. A three-dimensional vehicle model with 24 degrees-of-freedoms (DOFs) is presented. A cellular automaton (CA) model and the surface roughness are introduced. The bridge deck pavement is modeled as a boundless Euler-Bernoulli beam supported on the Kelvin model. The wind-traffic-pavement-bridge coupled equations are established by combining the equations of both the vehicles in traffic, pavement, and bridge using the displacement and interaction force relationship at the patch contact. The numerical simulation shows that the proposed method can simulate rationally useful assessment and prevention information for traffic, and define appropriate safe driving speed limits for vulnerable vehicles under normal traffic and bridge surface conditions.

플로팅 슬래브궤도와 일반 콘크리트궤도 접속부에서의 열차 및 궤도의 거동 분석 (Analysis of Behavior of Train and Track at Transition Zone between Floating Slab Track and Conventional Concrete Slab Track)

  • 장승엽;양신추;박만호;조수익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.379-384
    • /
    • 2009
  • It is of great importance to assure the running safety and ride comfort in designing the floating slab track for the mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety and ride comfort, and then, the behavior of train and track at the transition zone between the floating slab track and the conventional concrete slab track according to several main design variables such as spring constant, damping coefficient, spacing and arrangement of isolators and slab length, using the dynamic analysis technique considering the train-track interaction. The results of numerical analysis demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the vertical vibration acceleration of the train body, wheel-rail interaction force, rail bending stress and uplift force. The increase becomes higher with the decrease of the spring constant of isolators and the increase of the isolator spacing, but the damping ratio does not significantly affect the behavior of train and track at the transition. Therefore, to assure the running safety and ride comfort, simultaneously increasing the effectiveness of vibration isolation, it is effective to minimize the relative vertical offset between the floating slab and the conventional track slab by adjusting the spring constant and spacing of isolators at the transition.

  • PDF

종곡선과 평면곡선의 경합조건별 차량주행안전성 및 승차감 평가 (Evaluation of Running Safety and Ride Comfort for High Speed Train in Cases of Superimposition of Vertical and Horizontal Curves)

  • 엄주환;최일윤;김만철
    • 한국철도학회논문집
    • /
    • 제16권4호
    • /
    • pp.311-317
    • /
    • 2013
  • 철도선형에서 종곡선과 평면선형의 경합은 차량의 주행안정성 뿐만 아니라 건설비에도 많은 영향을 끼칠 수 있다. 본 연구에서는 종곡선과 평면곡선의 다양한 경합조건별 차량의 주행안전성 및 승차감에 미치는 영향을 분석하였다. 그 결과 종곡선과 평면원곡선의 경합 뿐만 아니라 종곡선의 완화곡선상 경합, 그리고 완화곡선-원곡선 연결부상의 경합에서도 차량의 주행안전, 승차감 및 궤도작용력 기준을 모두 만족하는 것으로 나타남을 알 수 있었다.

종곡선과 완화곡선 경합시 차량주행안전성 및 승차감에 대한 해석적 연구 (An Analytical Study on Running Safety and Ride Comfort in Case of Superimposition of Vertical and Transition Curves)

  • 엄주환;김만철;이일화;구병춘
    • 한국철도학회논문집
    • /
    • 제15권2호
    • /
    • pp.172-178
    • /
    • 2012
  • 현행 철도건설기준에서 종곡선과 완화곡선의 경합은 궤도형식에 관계없이 허용하고 있지 않다. 그러나 이러한 기준은 주로 자갈도상궤도의 유지보수의 어려움 때문에 정립된 것이다. 콘크리트궤도는 자갈도상궤도에 비해 유지보수 및 구조안전성 측면에서 장점을 가지고 있다. 따라서 콘크리트 궤도의 경우, 열차의 주행안전성 및 승차감 기준을 만족하는 범위내에서 어느 정도의 선로경합은 완화할 필요성이 있다. 본 연구에서는 종곡선과 완화곡선의 경합여부에 따라 도상종별 열차의 주행안전성 및 승차감, 그리고 궤도작용력을 비교 분석하였으며, 그 결과 경합된 경우도 주행안전, 승차감 및 궤도작용력 기준을 만족하는 것으로 나타났다. 따라서, 비록 자갈도상궤도에서의 선로경합은 많은 유지보수를 필요로 하기 때문에 적용될 수는 없다 할지라도, 콘크리트궤도에서는 유지보수 및 구조적 장점을 고려할 때 종곡선과 완화곡선의 경합이 적용될 수 있을 것으로 판단된다.

TTX차량의 동역학적 거동의 안정성 평가 (Safety evaluation of dynamic behavior of Korean tilting train)

  • 윤지원;김남포;김영국;김석원;박태원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.194-200
    • /
    • 2007
  • The tilting train is able to tilt its body towards the center of the turning radius, preventing roll-over of the train as it runs on a curved rail at high-speed. This train, widely accepted for commercial purpose internationally is very beneficial in that the operating time is shortened without much capital investment to the infrastructure where there are many curved rails. Over several years, the Korea Railroad Research Institute(KRRI) has developed such a train. In this paper, the safety of the Korean tilting train express(TTX) is investigated using a dynamic simulation model. Since, proper safety standards have not been established for the TTX, those for the Korean train express(KTX) is employed instead to analyze the safety and ride comfort of the TTX. This study will prove useful in predicting the behavior of the TTX and ride comfort, and conforming that designed TTX measures up to the safety standards. It would be useful to recommend proper normal operating speed and determine the maximum safety speed, according to the result. Furthermore, it would be possible to provide basic reference data when analyzing the dynamic effect of the catenary system and the fatigue of the bogie.

  • PDF

평면원곡선과 종곡선 경합시 보정캔트의 효과에 대한 해석적 연구 (An Analytical Study on the Effects of the Compensation Cant in case of Superimposition of Vertical and Horizontal Circular Curves)

  • 엄주환;최일윤;박찬경;이성혁;김은
    • 한국철도학회논문집
    • /
    • 제14권6호
    • /
    • pp.562-568
    • /
    • 2011
  • 철도선형에서 평면원곡선과 종곡선의 경합은 예기치 않은 주위 환경조건들에 의해 빈번히 발생하고 있으며, 이는 차량의 주행안정성, 승차감, 그리고 궤도유지보수비에 많은 영향을 끼친다. 본 연구에서는 경합부의 역학적 이론을 바탕으로 산정된 보정캔트량을 고속철도에 적용하여 궤도에 미치는 영향 및 차량의 주행안전성, 승차감을 분석하여 보정캔트의 효과에 대한 해석적 연구를 수행하였다. 그 결과 보정캔트가 있는 경우가 차량의 주행안전성 및 궤도작용력, 승차감 측면에서 모두 좋은 것으로 나타났다.

VEHICLE DYNAMIC SIMULATION USING A NONLINEAR FINITE ELEMENT ANALYSIS CODE

  • Yu, Y.S.;Cho, K.Z.;Chyun, I.B.
    • International Journal of Automotive Technology
    • /
    • 제6권1호
    • /
    • pp.29-35
    • /
    • 2005
  • The structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of ride and handling, durability, Noise/Vibration/Harshness (NVH), crashworthiness, and occupant safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, the Virtual Proving Ground (VPG) approach has been developed to simulate dynamic nonlinear events as applied to automotive ride & handling. The finite element analysis technique provides a unique method to create and analyze vehicle system models, capable of including vehicle suspensions, powertrains, and body structures in a single simulation. Through the development of this methodology, event-based simulations of vehicle performance over a given three-dimensional road surface can be performed. To verify the predicted dynamic results, a single lane change test was performed. The predicted results were compared with the experimental test results, and the feasibility of the integrated CAE analysis methodology was verified.

Ride-through of PMSG Wind Power System Under the Distorted and Unbalanced Grid Voltage Dips

  • Sim, Jun-Bo;Kim, Ki-Cheol;Son, Rak-Won;Oh, Joong-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • 제7권6호
    • /
    • pp.898-904
    • /
    • 2012
  • This paper presents a ride-through skill of PMSG wind turbine system under the distorted and unbalanced grid voltage dips. When voltage dips occur in the grid, pitch control and generator speed control as well as a parallel resistor of DC-link help to keep the turbine's safety. Modern grid code requires a wind turbine to supply reactive currents to help voltage recovery after grid faults clearance. In order to supply reactive currents to the grid in case of the distortedly unbalanced grid voltage dips, a special PLL is needed to control the grid side converter and to regulate the grid voltages symmetrically. The proposed method is applied to 2MW multi-pole PMSG wind turbine system, and verified by simulation.

생체 신호를 이용한 열차 승차감 평가 시스템 연구 (Study of Ride Comfort on Train through Physiological Parameter)

  • 송용수;오석문;이재호;김용규
    • 대한인간공학회지
    • /
    • 제30권1호
    • /
    • pp.237-250
    • /
    • 2011
  • The train transportation has a lot of advantages-energy efficiency is high, it is eco-friendly, safety is better than normal roads and it is possible for people to arrive on time. In these days, the valuation of ride comfort, which is only limited to road transportation, is newly recognized in order to having competitiveness from other transportation. Especially, in the development of the Korean high-speed railroad business, the ride comfort enhancement of train is very important problem to be solved. Currently, there are international standards of ride comfort such as UIC13, ISO2631. In Korea case, although it has own standard like KS R9216, it mainly depends on the physical parameter such as vibration and noise. So recently, in the valuation of ride comfort, the movements of living parameter technique introduction are increasing on the base of Japan and many developed countries of Europe techniques. Presently, the method of train ride comfort is mainly based of vibration, that is, mechanical parameter adding selection of variable acceleration and noise. This paper would like to show biological parameter; heart rate and blood pressure variation. This method is more direct, based on human body response, than mechanical parameter method. In this experiment, the variability of heart rate and blood pressure of passengers according to tilting angle change of Train, the Korean tilting train, we are supposed to know that the extent of tilting on the simulation has influence on variability of heart rate and blood pressure, which are living parameter of heart's blood.