• Title/Summary/Keyword: rice straw degradation

Search Result 81, Processing Time 0.022 seconds

THE INFLUENCE OF SELECTED CHEMICAL TREATMENTS ON THE RUMINAL DEGRADATION AND SUBSEQUENT INTESTINAL DIGESTION OF CEREAL STRAW

  • Wanapat, M.;Varvikko, T.;Vanhatalo, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.3 no.2
    • /
    • pp.75-83
    • /
    • 1990
  • An experiment was conducted with three ruminally and intestinally cannulated non-lactating cows of Finnish Ayrshire breed, to assess the ruminal degradation characteristics of oat (Avena sativa), rye (Secale cereale) and rice (Oryza sativa) straw by the nylon bag technique, and the subsequent post-ruminal degradation of their rumen-undegraded residues by using the mobile bag technique, respectively. The straw samples were untreated or treated with aqueous $NH_3$ or with urea solution in cold or hot water. The untreated straw samples were milled or chopped, and the treated straw samples were chopped. The constant values a, b, and c were computed according to the exponential equation, where a = intercept of degradation curve at time 0, b = potentially degradable material, c = rate of degradation of band (a+b) = maximum potential degradability (asymptote). It was found that nitrogen contents of chemically treated straw were markedly increased by both $NH_3$ and urea treatments. Milling the samples attributed to a remarkable loss at 0 h incubation time as compared to chopping of the respective samples. However, chemical treatment markedly improved the b value and the subsequent (a+b) values for dry matter, organic matter, neutral-detergent fiber, and acid-detergent fiber of the samples. Furthermore, temperature of the water used in the urea solutions was considered essential, since urea in hot water rather than in cold water seemed to enhance the overall degradability. The disappearance of rumen-incubated straw residues from the mobile bags ranged from 4.5 to 9.6% for the parameters measured. On average, the OM disappearance from bags was clearly higher for the residues of urea treated straw compared to those of ammonia treated straw, but the disappearance of NDF tended, however, to be higher on the ammonia treatment.

Effect of Chinese Milk Vetch (Astragalus sinicus L.) Cultivation dring Winter on Rice Yield and Soil Properties

  • Cho, Young Son;Choe, Zhin Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.1
    • /
    • pp.49-54
    • /
    • 1999
  • An experiment was carried out using pots to investigate the effects of Chinese milk vetch on the seedling establishment and growth in rice. Four irrigations with five-day intervals and three different levels of vetch straw were investigated. Significantly higher panicle numbers were obtained in vetch-treated pots. Vetch levels were non-treatment as checks, vetch with top removed, root plus shoot 7.5 ton/ha, and root plus shoot 3.0 ton/ha. The time for complete degradation of vetch straws was reduced from 10 days to 5 days as submerged time was delayed, and was affected by the amount of mulched vetch straws. As the mulched vetch amount increased, the time for a complete degradation was extended from 4 days to 12 days. Grain yield and its components were significantly affected by irrigation time and mulched vetch amount. Effectively controlled, lowered reduction damage from the degrading vetch straw, irrigation date and vetch amount were the most important factors for the improving of seedling establishment in direct-sown rice.

  • PDF

Effects of Cassava Leaf Meal on the Rumen Environment of Local Yellow Cattle Fed Urea-Treated Paddy Straw

  • Khang, D.N.;Wiktorsson, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1102-1108
    • /
    • 2000
  • An experiment was conducted as a Latin square design with four rumen fistulated local yellow cattle with a mean live weight of 230 kg. The treatments were: $(CLM_0)$ urea-treated rice straw ad libitum plus 1 kg cassava root meal (basal diet), $(CLM_{500})$ basal diet plus 500 g cassava leaf meal, $(CLM_{1000})$ basal diet plus 1,000 g cassava leaf meal, and $(CLM_{1500})$ basal diet plus 1,500 g cassava leaf meal. The results showed that there were differences in dry matter intake of urea-treated rice straw between treatments (p<0.05). The highest total dry matter intake was observed for treatment $CLM_{1500}$, with 2.62 kg DM/100 kg LWt/day, followed by treatments $CLM_{1000}$, $CLM_{500}$ and $CLM_0$, with 2.42, 2.00 and 1.86 kg DM/100 kg LWt/day, respectively. The ruminal ammonia concentration on treatment $CLM_{1500}$ was greater than on treatments $CLM_{1000}$, $CLM_{500}$ and $CLM_0$. There were non-significant differences in the ruminal pH among the treatments. The in sacco degradability of cassava leaf meal and cassava root meal was high, and on average 75 and 85% respectively of the DM had disappeared after 24 h of incubation. Degradation rate of urea treated rice straw was 64% after 72 h of incubation.

MICROBIAL COLONIZATION AND DIGESTION OF FEED MATERIALS IN CATTLE AND BUFFALOES II. RICE STRAW AND PALM PRESS FIBRE

  • Abdullah, N.;Ho, Y.W.;Jalaludin, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.5 no.2
    • /
    • pp.329-335
    • /
    • 1992
  • Degradation of rice straw was observed to be higher (p<0.01) in the buffaloes than in cattle. At 48 h, the dry matter (DM) loss of straw for buffaloes was 53.6 0.8% and that for cattle was 48.7 2.6%. Palm press fibre (PPF) was poorly degraded in the rumen of both animal species. A loss of about 21% DM was observed in both cattle and buffaloes after 48 h of incubation in the rumen. The pattern of bacterial and fungal colonization of straw and PPF seemed to be similar in both cattle and buffaloes. Microbial colonization was restricted by plant structures like the silica crystals in both straw and PPF. The predominant bacteria colonizing both straw and PPF fragments were the rods. Eroded zones and digestion pits were pronounced in straw fragments after 1 h of incubation. The PPF fragments appeared undegraded even after 6 h of incubation. Fungal colonization of straw was rapid and extensive in both cattle and buffaloes. The sporangia observed in straw were mainly spherical or oval in shape, but fusiform sporangia with acuminate tip were predominantly seen in PPF fragments.

Degradation Pattern of CMC, Xylan, Lignin Components of Rice Straw by Bacillus subtilis DO4 (Bacillus subtilis DO4에 의한 볏짚의 CMC, Xylan 및 Lignin 성분의 분해양상에 관하여)

  • Choe, Yeong-Tae;Kim, Kyu-Jung
    • Korean Journal of Microbiology
    • /
    • v.22 no.2
    • /
    • pp.97-101
    • /
    • 1984
  • To investigate the biodegradation pattern of rice straw, mainly composed of cellulose, hemicellulose and lignin components, by the isolate stran Bacillus subtilis $DO_4$, the change of cell population was observed on CMC (carboxymethyl cellulose), larch wood xylan and lignosulfonate as a carbon source respectively. Also, the transition pattern of enzyme activities of cellulase and xylanase and lignin contents was measured on rice straw and mixed substrate according to growth. The results in these experiments revealed that xylanase activity was first appeared and cellulase activity in the next, while lignin component was almost not changed through the culture period.

  • PDF

Development of Natural Color of Bleached Hanji Dyed with Rice Straw Extractives (볏짚 추출물을 이용한 한지의 천연색 발현)

  • 최태호;이연숙
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.3
    • /
    • pp.43-48
    • /
    • 2003
  • Black liquor staining for the development of natural color of bleached Hanji caused problems of discoloration and degradation. This study was carried out not only to complement these problems but also to develop natural dyeing method that was similar to the color of unbleached Hanji, through the dyeing of rice straw extractives. The dyeing properties of Hanji were influenced more by dyestuffs extraction method than extraction and dyeing time. Dyeing ability of hot water extractives was superior to cold-water extractives. Without the relation to the time of extraction and dyeing, the color of Hanji dyeing hot water extractives were similar to the control, and the color of Hanji dyed for 45 min with hot water extractives that extracted for 120 min, were almost same as the control. As natural dyestuffs, hot water extractives of rice straw showed that excellent dyeing ability for the development of various natural colors similar to unbleached Hanjis.

  • PDF

Effect of Type and Level of Foliage Supplementation on Voluntary Intake and Digestibility of Rice Straw in Sheep

  • Premartane, Sujatha;van Bruchem, J.;Perera, H.G.D.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.2
    • /
    • pp.223-228
    • /
    • 1997
  • In-vivo balance and nylon bag studies were conducted with rumen fistulated sheep to investigate the effect of type, i.e. Leucaena (L), Gliricidia (G) and Tithonia (T), and level (1, ~15; 2, ${\sim}30g\;DM/kg^{0.75}$) of foliage supplementation on voluntary intake and digestibility of rice straw. Inclusion of these leafy supplements in the diet significantly increase total feed intake. On a metabolic weight basis ($kg^{0.75}$), voluntary intake of digestible DM increased from 23.8 (control straw diet) till 27.7 (L1), 28.4(G1) and 33.1(T1) for the lover level, and till 34.8(L2), 35.9(G2) and 39.6(T2) $g/kg^{0.75}$ for the higher level of supplementation, respectively. Rumen pH was stable, on average 6.75 (control values) and ranging from 6.67 till 6.91 with the supplements. Rumen ammonia increased from 4.9 till 6.7 to 11.8 mmol/l with the supplements. The highest increase was obtained with G and the lover with L and T. The nylon bag studies showed that contrary to the rate of degradation of the supplements themselves, supplementation did not affect the in-sacco rate of straw dry matter degradation ($k_d$; range 1.87-2.08 %/h). At the higher supplement level, for L, G and T, $k_d$ values were 3.36, 8.16 and 8.58 %/h, respectively.

Effects of Exogenous Enzymes on Ruminal Fermentation and Degradability of Alfalfa Hay and Rice Straw

  • Yang, H.E.;Son, Y.S.;Beauchemin, K.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.1
    • /
    • pp.56-64
    • /
    • 2011
  • This study was conducted to evaluate the use of exogenous enzymes as a potential means of improving the ruminal digestion (i.e., degradability) of alfalfa hay and rice straw. Twenty six enzyme-additives were examined in terms of protein concentration and enzymic activities on model substrates. The exogenous enzymes contained ranges of endoglucanase, xylanase, ${\beta}$-glucanase, ${\alpha}$-amylase, and protease activities. Six of the enzyme additives were chosen for further investigation. The enzyme additives and a control without enzyme were applied to mature quality alfalfa hay substrate and subsequently incubated in rumen batch cultures. Five of the enzyme additives (CE2, CE13, CE14, CE19, and CE24) increased total gas production (GP) at 48 h of incubation compared to the control (p<0.05). The two additives (CE14 and CE24) having the greatest positive effects on alfalfa hay dry matter, neutral detergent fibre (NDF) and acid detergent fibre (ADF) degradability were further characterized for their ability to enhance degradation of low quality forages. The treatments CE14, CE24, a 50:50 combination of CE14 and CE24 (CE14+24), and control (no enzyme) were applied to mature alfalfa hay and rice straw. For alfalfa hay, application of the two enzyme additives, alone and in combination, increased GP compared to the control at 48 h fermentation (p<0.05), whereas only CE14 and CE14+24 treatments improved GP from rice straw (p<0.05). Rumen fluid volatile fatty acid concentrations throughout the incubation of rice straw were analyzed. Acetate concentration was slightly lower (p<0.05) for CE14${\times}$CE24 compared to the control, although individually, CE14 and CE24 acetate concentrations were not different from the control. Increases (p<0.05) in alfalfa hay NDF degradability measured at 12 and 48 h of incubation occurred only for CE14 (at 12 h) and for CE14+24 (at 12 and 48 h). Similarly, ADF degradability increased (p<0.05) with CE14 and CE14+24. As for rice straw, increased DM degradability was observed at 12 and 48 h of incubation for all enzyme treatments with an exception for CE14 at 12 h. The degradability of NDF was improved by all the enzyme treatments at either incubation time, while ADF degradability was only enhanced at 48 h. Overall, the enzymes led to enhanced digestion of mature alfalfa and there was evidence of improved digestibility of rice straw, an even lower quality forage.

Effects of rice straw fermented with spent Pleurotus sajor-caju mushroom substrates on milking performance in Alpine dairy goats

  • Fan, Geng-Jen;Chen, Mei-Hsing;Lee, Churng-Faung;Yu, Bi;Lee, Tzu-Tai
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.999-1009
    • /
    • 2022
  • Objective: To improve the feeding value of rice straw (RS), this study evaluated the potential of rice straw fermented with Pleurotus sajor-caju (FRS) as dairy goat feed. Methods: Spent Pleurotus sajor-caju mushroom substrate was used as fungi inoculum to break the lignocellulose linkage of rice straw, which was solid-fermented at 25℃ to 30℃ for 8 weeks. The ruminal degradation of pangolagrass hay (PG), FRS, and RS were measured in situ for 96 hours in three dry Holstein cows, respectively. Effect of fungi fermented RS on milking performance was studied in feeding trials. A total of 21 Alpine goats a trial were divided into 3 groups: a control group in which PG accounted for 15% of the diet dry matter, and FRS or RS was used to replace the PG in the control group. Goats were fed twice a day under two 28-day trial in individual pens. Meanwhile, a 3×3 Latin square trial (14 days/period) was conducted to study the rumen digestion of three diets by using three fistulated dry goats. Rumen contents were collected for metabolite analyses every one to three hours on the last two days. Results: In situ study showed that fermentation could elevate the rumen degradable fraction and effective degradability of RS (p<0.05). Effective degradability of FRS dry matter was significantly increased from 29.5% of RS to 41.7%. Lactating trial results showed that dry matter intake and milk yield in the PG group and FRS group were similar and higher than those in RS group (p<0.05). The concentration of propionic acid and total volatile fatty acid in the RS group tended to be lower than those in PG group (p<0.10). There were no differences in rumen pH value and ammonia nitrogen level among the groups tested. Conclusion: Fermentation of rice straw by spent Pleurotus sajor-caju mushroom substrate could substantially enhance its feeding value to be equivalent to PG as an effective fiber source for dairy goat. The fermented rice straw is recommended to account for 15% in diet dry matter.

Basic Study on the in-situ Biogenic Methane Generation from Low Grade Coal Bed (저품위 석탄의 원지반에서의 생물학적 메탄가스 생산에 관한 기초연구)

  • Wang, Fei;Jeon, Ji-Young;Lim, Hak-Sang;Yoon, Seok-Pyo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.23 no.4
    • /
    • pp.11-20
    • /
    • 2015
  • In the present work, a basic study on the in-situ biogenic methane generation from low grade coal bed was conducted. Lignite from Indonesia was used as a sample feedstock. A series of BMP (Biochemical Methane Potential) tests were carried out under the different experimental conditions. Although nutrients and anaerobic digester sludge were added to the coal, the produced amount of methane was limited. Both temperature control and particle size reduction showed little effect on the increase of methane potential. When rice straw was added to lignite as an external carbon source, methane yield of 94.4~110.4 mL/g VS was obtained after 60 days of BMP test. The calorific value of lignite after BMP test decreased (4.5~12.1 %) as increasing the content of rice straw (12.5~50 wt % of lignite), implying that anaerobic digestion of rice straw led to partial degradation of lignite. Therefore, rice straw could be used as an external carbon source for the start-up of in-situ biogas generation from low grade coal bed.