• Title/Summary/Keyword: rice seeds

Search Result 551, Processing Time 0.029 seconds

Effect of Different Herbicides on Initial Rice and Weedy Rice Seedling Growth under Iron-coated Seeds in Flooded Direct Seeding (담수직파 파종 전 제초제 처리에 따른 철분코팅종자와 잡초성 벼의 출아, 입모 및 초기생육 영향)

  • Park, Kwang Ho
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.93-100
    • /
    • 2016
  • This research was conducted to determine a pre-germinated herbicides with iron-coated seeds in water and wet hill seeded rice. Days of rice seedling emergence was the faster germination at the application of benzobicyclon > oxadiazon > thiobencarb > butachlor and the sealed iron-coated seeds with pre-germinated seeds> pre-germinated seeds> iron-coated seeds with pre-soaking. The seedling establishment was relatively high in untreated control and benzobicyclon among seed treatments by 63.7% and 75.7%. There was 100% seeds killed of pre-germinated seeds in terms of herbicide phytotoxicity and sealed iron-coated seeds with pre-germinated seeds in butachlor but benzobicyclon was of safe with 2% rice seeds killed. Infant rice seedling height was of 9.2-12.9cm in benzobicyclon and 11.9-16.3cm in untreated control and thus there was relatively normal development and growth at the initial rice seedling.

Soybean Seeds Damaged by Riptortus Clavatus (Thunberg) Reduce Seed Vigor and Quality of Bean Sprout Produce

  • Oh, Young-Jin;Cho, Sang-Kyun;Kim, Young-Jin;Kim, Kyong-Ho;Paik, Chae-Hoon;Kim, Tae-Soo;Kim, Jung-Gon;Cho, Youngkoo
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.439-447
    • /
    • 2010
  • Riptortus clavatus, one of the many insects in major crops, damages pods and seeds, which reduces seed vigor and viability in soybeans. This study was conducted to examine the effect of diversely damaged seeds by R. clavatus on seed germination and seedling emergence and to determine the association of damaged seed with quality and yield of soybean sprouts. All seeds damaged by R. clavatus significantly (P<0.05) reduced seed vigor as measured by the rates of seed germination, germination speed, and seedling emergence. Mean seed germination rate of non-damaged seeds in sprout-soybean varieties was 97.8%, whereas the rates of seeds damaged at different levels, 31-50% and 51-80%, were 23.0 and 5.4%, respectively. The rates of seedling rot and abnormal, incomplete germination significantly (P<0.05) increased as the amount of seeds damaged by R. clavatus increased to 5, 10 and 15% against the total seeds for sprout production. Yield of soybean sprouts from seeds damaged at different levels decreased up to 13% as compared to that in normal seeds. In customer preferences on soybean sprout produce, 84% of customers participated in survey preferred to purchase sprouts from seeds with 5% of damaged seeds, but sprouts produced from seeds with 15% of damaged seeds were intended to purchase only by 22% of the customers. Areas of the seed damaged by R. clavatus were readily infected by pathogens as the seed germinated, resulted in deteriorated quality and reduced yield of sprout produce.

Growth and Yield in Direct Seeded Rice Cultivation with Iron Coated-Seeds (철분코팅 볍씨를 이용한 벼 직파재배의 생육 특성 및 수량)

  • Park, K.H.;Park, S.T.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.20 no.1
    • /
    • pp.5-18
    • /
    • 2018
  • The field trial was performed to evaluate the rice growth and yield in direct seeding cultivation with iron-coated rice seeds. The required time for seed emergence was for 9~11days in the tested direct seeding methods. That was 1~2days earlier in direct seeding with pregerminated seeds than that of direct seeding with iron-coated seeds. The seedling establishment was highest in water seeding with iron-coated seeds but there was not significant difference in terms of statistical analysis. The rice plant height was taller in water seeding with broadcasting method than that of wet hill-seeding methods and in direct seeding with iron-coated seeds than that of direct seeding with pregerminated seeds. The tiller number in the rice plant was the highest in machine transplanting at 30days after direct seeding(June 17) and in water seeding with iron-coated seeds at 45days after seeding(DAS) and 60DAS. The tiller number of 75 and 90DAS in the tested rice cultivation methods being with 352~405/m2 was not significantly different in terms of statistical analysis. The heading time was not different in rice direct seeding methods but 2 day earlier in direct seeding with iron-coated seeds than that of direct seeding with pregerminated seeds. The culm length was the highest in water seeding with iron-coated seeds and the panicle length was the longest in wet hill-seeding with pregerminated seeds. The panicle number per m2 was highest in water seeding with iron-coated seeds but not significant difference among the tested rice cultivation methods. The water seeding with iron-coated seeds resulted in the highest spikelet number per m2 and the heaviest grain weight of brown rice. Percentage of ripened kernel was the highest in wet hill-seeding with iron-coated seeds. But there were not significant among the tested rice cultivation methods. The milled rice yield in direct seeding methods was 3~21% higher than that in machine transplanting. Water seeding with iron-coated seeds recorded the highest milled rice yield being with 6.86t/ha.The occurrence of sheath blight was high according to machine transplanting>wet hill-seeding>water seeding. Weed occurrence was the highest in water seeding with pregerminated seeds. Weedy rice occurred not in machine transplanting but occured 0.6~0.7% in direct seeding methods with pregerminated seeds and 0.1% in direct seeding with iron-coated seeds.

Germination Characteristics of Some Red Rice Accessions

  • Kyoung, Eun-Seon;Kim, Jin-Key;Kim, Jong-Seok;Ma, Sang-Yong;Ryang, Whan-Seong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.4
    • /
    • pp.316-320
    • /
    • 1999
  • Nine accessions of red rices collected from different regions were tested for germination characteristics in relation to seed maturity and several storage conditions after harvest. No red rice seeds germinated at five days after anthesis (DAA). Wanjuaengmi (long-grain red rice) seeds at 10DAA germinated up to 30% of total samples, producing only abnormal seedlings, whereas 10D-AA-seeds of normal cultivar showed only 3.3% germinability. Some red rice seeds absorbed more water than cultivated varieties, and showed less decrease in germination rate than cultivated varieties when seeds were exposed at -1, -5 or -1$0^{\circ}C$ for up to 60 hours after soaking. Red rice accessions maintained more than 95% germination when stored. indoor for 120 days. Two short-grain red rices showed about 50% germination when overwintered in the field, while other long-grain red rices and cultivated rices germinated less than 10%. Germination of seeds overwintered in clay loam soil was lower than that in loam soil, and seeds on surface germinated less than those in 1~7cm depth.

  • PDF

Rice genotype, parental lineage and physiological tolerance to soil salinity shapes the community structure of rice seed bacterial endophytes

  • Walitang, Denver I.;Kim, Kiyoon;Chatterjee, Poulami;Kang, Yeongyeong;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.342-342
    • /
    • 2017
  • Rice seeds are a home to endophytic bacterial communities which serve as a source of the plant's endophytes. As rice undergo physiological and adaptive modifications through cross breeding in the process of attaining salinity tolerance, this may also lead to changes in the endophytic bacterial community especially those residing in the seeds. This study explores the community structure of seed bacterial endophytes as influenced by rice parental lineage, genotype and physiological adaptation to salinity stress. Endophytic bacterial diversity was studied through culture dependent technique, cloning and Terminal-Restriction Fragment Length Polymorphism (T-RFLP) analysis. Results revealed considerably diverse communities of bacterial endophytes in the interior of rice seeds. The richness of ribotypes ranges from 5-14 T-RFs corresponding to major groups of bacterial endophytes in the seeds. Endophytic bacterial diversity of the salt-sensitive IR29 is significantly more diverse compared to those of salt-tolerant cultivars. Proteobacteria followed by Actinobacteria and Firmicutes dominated the overall endophytic bacterial communities of the indica rice seeds based on 16S rDNA analysis of clones and isolates. Community profiles show common ribotypes found in all cultivars of the indica subspecies representing potential core microbiota belonging to Curtobacterium, Flavobacterium, Enterobacter, Xanthomonas, Herbaspirillum, Microbacterium and Stenotrophomonas. Multivariate analysis showed that the bacterial endophytic community and diversity of rice seeds are mainly influenced by their host's genotype, physiological adaptation to salt stress and parental lineage.

  • PDF

Farmer's Field Trial of Different Coating and Covering Materials on Rice Growth and Yield in Wet Hill Seeded Rice (볍씨 코팅 및 규산복토에 따른 벼 무논점파재배 농가실증시험연구)

  • Park, Kwang Ho;Kim, Yang Sik;Chang, Jin Tack
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2015
  • The experiment was conducted to evaluate rice growth and yield as affected by different coating and covering materials such as a iron, silicate, iron and silicate mixture of rice seeds in farmer's rice growing field. The tiller number was 36.7 at iron-coated seeds, 32.8 at silicate-covered seeds, 30.3 at iron and silicate mixture coated seeds and 30.2 at untreated control in 44days after seeding. The seedling height was 38.2cm of iron and silicate mixture, 37.7cm of untreated control, 36cm of iron-coated and 35.7cm of silicate covered seeds in 43days after seeding. At 75days after seeding rice tiller number was 153 of iron-coated seeds, 152 of silicate-covered seeds, 147 of untreated seeds and 141 of iron and silicate mixture-coated seeds and also there were different plant height growth of 87.4cm in silicate-covered seeds, 85.7cm in iron and silicate mixture, 85.4cm in untreated control and 83.0cm in iron-coated seeds. The panicle length was of 21.0cm in iron and silicate mixture coated seeds, 20.8cm in silicate covered seeds, 20.7cm in untreated control seeds and 20.6cm in iron-coated seeds. The panicle number was 464 at iron-coated seeds, 404 at untreated control seeds, 427 at silicate-covered seeds and 412 at iron and silicate mixture coated seeds. The spikelet number per m2 was of 32,503 in iron-coated seeds, 31,813 in silicate-covered seeds, 29,646 in untreated control, 28,896 in iron and silicate mixture coated seeds. The ripened ratio of rice grain was of 94.5% at iron-coated seeds, 93.9% at iron and silicate mixture coated seeds, 93.6% at silicate covered seeds and 93.2% at untreated control seeds. The rice yield was of 591kg/10a at iron-coated seeds, 580kg/10a at silicate-covered seeds, 571kg/10a at iron and silicate mixture-coated seeds and 539kg/10a at untreated control.

Occurrence and Distribution of Weedy Rice in Kyonggi Region

  • Cho, Young-Cheol;Park, Jung-Soo;Park, Kyeong-Yeol;Kim, Hee-Dong;Rho, Young-Deok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.43 no.4
    • /
    • pp.254-258
    • /
    • 1998
  • Distribution and occurrence of weedy rice in Kyonggi region were surveyed in 1996. Weedy rice was observed in 1368 fields (54.9%) of total 2490 fields. Almost two thirds of paddy fields in northern mountainous region were contaminated by weedy rice and more severe contamination, three forths of paddy fields, was observed in suburban regions. In those regions, occurrence of weedy rice was greater than those in north-eastern inland and south-western plain regions. The occurrence of weedy rice was higher in water seeding cultivation (66.7%) than other cultivation methods. The number of weedy rice per 10a was 756.7 plants in direct seeding on dry paddy and 379.4 plants in water seeding. The occurrence of weedy rice was higher in fields planted by farmer's seeds than that of paddy fields cultivated by certified seeds, and the longer the farmer's seeds being used, the more weedy rice occurred in paddy field.

  • PDF

Direct Seeding Cultivation on Submerged Paddy in Rice II. Dissolved Oxygen Uptake and Germination Properties of Rice Varieties in the $O_2$ Saturated Water (벼 담수토중 직파 재배 연구 II. 벼 품종의 수중발아시 용존산소 흡수와 발아특성)

  • Lee, Chul-Won;Seong, Ki-Yeong;Park, Seok-Hong;Park, Rae-Kyeong;Cho, Dong-Sam
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.33 no.1
    • /
    • pp.97-101
    • /
    • 1988
  • The objective of this paper was to examine the oxygen requriement of rice seeds when the seeds were germinating under the water. The trial was carried out in the laboratory with the different water temperature (25$^{\circ}C$, 17$^{\circ}C$) in the Crop Experiment Station, Suwon. The tested varieties were 6 in japonica and 6 in indica (I) ${\times}$ japonica (J). In the 25$^{\circ}C$ water temperature rice seeds absorbed more dissolved oxygen (DO) and germinating duration was shorter than in the 17$^{\circ}C$ water temperature. DO uptake of japonica rice seeds was faster than that of indica ${\times}$ japonica rice seeds, and the germinating ratio of japonica rice seeds was higher than that of I${\times}$J rice seeds in the water. DO requirements of germinating rice seeds in the water were average 82.4 ${\mu}$g per seed up to coleoptile appearance and average 123.6 ${\mu}$g per seed up to appearance of radicle in the japonica varieties, but I${\times}$J varieties were 96.9 ${\mu}$g and 145.1 ${\mu}$g respectively. Especially when the rice seeds were germinated in the water, length of coleoptile and radicle of japonica rice were significantly longer than those of I${\times}$J rice varieties.

  • PDF

Identification of Seed-borne Penicillium spp. on Gramineae Crops Based on Morphological Characteristics (형태적 특성에 의한 벼과작물 종자전염 Penicillium spp.의 동정)

  • Kim, Min-Kyung;Hyun, Ik-Hwa;Kim, Jin-Won
    • The Korean Journal of Mycology
    • /
    • v.33 no.2
    • /
    • pp.81-85
    • /
    • 2005
  • A total of 81 isolates of Penicillium were isolated from postharvest seeds of barely, Job's-tears, maize, sorghum and rice from 1997 to 2003. Based on the morphological characteristics, they were identified as P. chrysogenum, P. citrinum, P. cyclopium, P. oxalicum, P. polonicum, P. purpurogenum and P. viridicatum. P. chrysogenum was detected from Job's-tears, rice and sorghum seeds, P. citrinum from maize seeds, P. cyclopium from sorghum seeds, P. oxalicum from barely, maize, sorghum and rice seeds, P. purpurgenum from maize, rice, sorghum seeds, P. viridicatum from Job's-tears, maize and rice seeds, P. polonicum from Job's-tears, maize, rice and sorghum seeds. Among these species, P. cyclopium, P. polonicum and P. purpurogenum were first reported in Korea. Especially, about 50% of the Penicillium isolates detected from the seeds were P. polonicum. Identification of the Penicillium species using morphological characteristics was difficult especially for the species belonging to the subgenus Penicillium such as P. polonicum.

Growth and Yield Variation of Clay-coated Rice Seeds in Direct Seeding Culture on Dry Paddy

  • Choi, Weon-Young;Park, Hong-Kyu;Ku, Bon-IL;Mo, Young-Jun;Choi, Min-Gyu;Kim, Sang-Su;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.3
    • /
    • pp.292-296
    • /
    • 2008
  • Clay-coated rice seeds (clay-coated seeds A and B) were directly sown on dry paddy and their growth and yield were compared with the normal drill-sown seeds on dry flat paddy. In clay-coated seeds, germination was 1 day earlier and the emergence rate was higher up to 5% than that of normal drill-sown seeds. But the apparent number of seedling stand per $m^2$ was lower than that of normal drill-sown seeds, which is due to the smaller amount of seeding in clay-coated seeds. At the early growth stage, the plant height of clay-coated seeds A was taller than that of drill-sown seeds, while the plant height of clay-coated seeds B was 0.7 cm shorter than that of drill-sown seeds. At the late growth stage, however, the difference was insignificant in both cases. The maximum tillering stage was 10 days earlier in drill-sown seeds. Lodging index was the lowest in clay-coated seeds B and there was no difference between clay-coated seeds A and drill-sown seeds. The ratio of stem base weight, culm diameter and culm wall thickness were higher in clay-coated seeds, while the lower internodes (4th, 5th and 6th) length was shorter in claycoated seeds than in drill-sown seeds. In clay-coated seeds, the number of panicle per $m^2$ was smaller, while the number of spikelet per panicle was a little larger than in drill-sown seeds. The rate of ripened grain and brown rice 1,000 grain weight were lower in the clay-coated seeds, thus the yield was $98{\sim}99%$ level of drill-sown seeds. Considering that the amount of seeding in clay-coated seeds was two-thirds of that in drill-sown seeds, it is expected that clay coating method could become an additional technique for direct seeding cultivation.