• Title/Summary/Keyword: rice paddy soils

Search Result 352, Processing Time 0.027 seconds

Studies on the Desalinization and Improvement of Physical-chemical Characteristics of Saline and Alkali Soils by CHP Treatment (CHP에 의(依)한 간척지(干拓地) 토양(土壤)의 제염(除鹽) 및 이화학성질개량(理化學性質改良)에 관(關)한 시험연구(試驗硏究))

  • Lee, S.H.;Oh, J.S.;Im, C.N.
    • Applied Biological Chemistry
    • /
    • v.8
    • /
    • pp.65-73
    • /
    • 1967
  • For the study of method for salt elimination aimed at reforming tidal land into normal paddy fields in a short period with reduction of periods requiring for elimination of saline, CHP (a kind of Ca-hum ate), a soil conditioner made of peat as a main material was tried. In the pot experiment, effect on elimination of salt, improvement of physical-chemical characteristics and rice cultivation test were studied. The results of these tests are as follows: 1, CHP treatment somewhat improves aggregation state with some effect on aggregation. 2. CHP treatment is remarkably effective in permeability which increases with 1.0 percent treatment by three times in percolation rate, and by 4.5 times in volume of leached water respectively. 3. With the increase of CHP amounts, salt was eliminated in short period. When 80% of the total Na was leached in 1.0% CHP-A treated pot, control pot begins permeable. 4. CEC and phosphorous absorption capacity are not influenced by CHP treatment. 5. Growing state of rice is greatly influenced by rainfalls. Growth of rice in tidal land however are almost similar to those in normal paddy fields with layer amounts of CHP treatment. With salt content in the soils, saline hazard and numbers of ineffective stems, amounts of unmatured grain are increased. 6. With the treatment of CHP yields of rough rice were increased. With 0.5% CHP treatment the yields were similar to those of the normal paddy fields. With 1.0% CHP-A treatment, the yields were increased by 15 times more than those of none treated soil and by 25 percent more than normal paddy soils.

  • PDF

Interaction between Silicate and Phosphate Fertilizers Applied in the Paddy Soils (답토양(畓土壤)에서의 시비규산(施肥珪酸)과 인산(燐酸)의 상호작용(相互作用)에 관(關)한 연구(硏究))

  • Lim, Sun-Uk;Baek, Nam-In
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.4
    • /
    • pp.325-332
    • /
    • 1983
  • To investigate interactions of silicate and phosphate applied in paddy soil, different levels of the two fertilizers were treated on pots of Jinheung variety of Japonica rice, then availability and absorption of the silicate and phosphate and growth of the rice plant were analyzed. The availability of silicate applied in soil was reduced by increased application of phosphate and this antagonism implied the interaction of silicate and phosphate in soil. The silicate absorption by rice plants was remarkably reduced by the phosphate application, while the phosphate absorption was reduce only at high levels of silicate. At low levels of silicate, the phosphate absorption was affected differently depending on growth stage or parts of the rice plant. The application of silicate fertilizers increased the pH of the soils. The application of silicate and phosphate fertilizers improved the plant height, the tiller number, and the grain weight, but not the dry weight of the grain. The effect of interaction of silicate and phosphate on the plant growth did not appeared.

  • PDF

Research on the Effect of the Control Methods of Irrigation Water on the Growth and Yield of Paddy Rice. (한발기에 있어서 용수관리 방법이 수도생육과 그 수량에 미치는 영향에 관한 연구)

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2177-2190
    • /
    • 1971
  • This experiment was made to determienthe effect of various soil moisture contents in simulated drought conditions on different stages of rice growth. The drought conditions were developed at such three rice-growing stages as transplanting, immediately after transplanting and young ear forming. Three different lengths of drought periods, which are ten days, twenty days and thirty days, were applied for each growing stage of rice. The rice variety used this experiment is Nong-rim 29. This experiment was conducted at the university farm of the Kon-Kuk University during the period of $1968{\sim}1970$. Three reprications for each of 12 treatments and split plot design were employed in this study. Bottomless wood square boxes, $1^m{\times}1^m{\times}1^m$, were burried in the test plot and box top was covered with poloyethylene sheets to avoid natural rainfall drops. Standard plots were irrigated continuously with a water depth of 40mm/day and those of drought treatments were irrigated continuously up to the beginning of the planned drought period, and they were irrigated again with a depth of 40mm/day up to the maturing stage of rice. Other methods for rice raising followed those methods developed by the Field Crops Experiment Station of the Office of Rural Development. During this experiments, climatic conditions in regard to rainfalls, sunshine hours, and temperatures were observed. According to this observation, those values measured deviate slightly from the annual means. However the growing condition of rice plants were normal. The pH value of irritation water is nearly neutral, and soils in the test plots are relatively fertile, being similar to ordinary paddy soils. Analysis of variances for number of stalks, plan-height, ear sprouting date, length of stalks, ear length, number of ears per plant, fertility, grain weitght, weight of plant, and yield were carried out. The variances for plant height, ear sprouting date, length of stalk ear length, and yield has statistical significance under drought treatments applied at three different growing stages. The variance showing the effect of lengths of drought period is highly significant for all the treatments studied except that of grain weight. The interaction between drought periods and drought treatments at different growing stages is significant for plant height, stalk length, ear length, number of ears, fertility and yield, these results indicated that droughts at different growing stages have influence on plant height, ear length, yield, and length of drought period also has strong influence on all factors studied except grain weight. The combination of drought treatments at different rice growing stages and lengths of drought periods has different effects on various agronomic characteristics, including yield. Plant height under drought treatment practiced at transplanting stage is the lowest, and drought treatment applied immediately after transplanting resulted in the least number of stalks. The effect of different lengths of drought periods on plant height and number of stalks depends signis ficantly on increasing days of drought. Ear sprouting date tends to be delayed for one or two days undedrought treatments at transplanting period and with increasing days of drought. Better yield is secured in drought treatment applied immediately after transplanting. Adverse effect war observed when drought treatment was applied at ear forming period. These effects may be attributed to the alternation of irrigation and drought causing vigorous root activity. In general, yield linearly decreases as the length of the drought period increases. The results obtained in this study demonstrate that, in order to mimimize damage due to drought, and, to save irrigation water, paddy fields, immediately after transplanting, may be not irrigated, since there is sufficient moisture in the soil, and that sufficient irrigation water should be applied again in the ear forming stage of rice plant.

  • PDF

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Fluctuation of Rhizosphere Microflora in Paddy Rice by Long-Term Fertilization (동일비료 장기연용에 따른 벼 근권 미생물상의 변화)

  • Lee, Gye-Suk;Lee, Jae-Chan;Kang, Ui-Gum;Park, Chang-Young;Kim, Chang-Jin
    • Applied Biological Chemistry
    • /
    • v.49 no.3
    • /
    • pp.175-179
    • /
    • 2006
  • This study was carried out to investigate the change of rhizosphere microflora in paddy soils of long-term application of same fertilizer by single cropping. Treatments consisted of no fertilizer, NPK, PK, NK, NP and NPK + compost and the same fertilizer has been applied to the soil of each treatment for thirty five years. Any remarkable difference of the microbial population structure was not detected from the rhizosphere of Hwayeongbyeo and that of Hwasambyeo. However, slight difference of dominant microbial species in the rhizosphere was recognized between different fertilization practice. The bacterial population in the rhizosphere was steadily reduced over time after rice plant setting out, while actinomycetal population was increased over time. The increase of actinomycetal population was the highest in the NPK + compost treatment, suggesting the effect of organic matters in the change of actinomycetal population. As for the aerobic culturable bacterial diversity, Bacillus megaterium, B. mycoides, B. licheniformis and B. subtilis were dominants in genus Bacillus, and Streptomyces spororaveus, S. canus, S. tauricus and S. galbus in genus Streptomyces and genus Micromonospora was another dominant in actinomycetes.

Estimation of Chemical Forms of Phosphate Released from the Paddy Soils with Different Effect of Phosphate Application (인산비옥도(燐酸肥沃度)가 상이(相異)한 답토양(畓土壤)에서 환원용출(還元溶出)되는 인산형태(燐酸形態)의 추정(推定))

  • Hong, Jung-Kuck
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.2
    • /
    • pp.89-94
    • /
    • 1982
  • 1. Solubility diagram was used to estimate Chemical form of the Soil phosphates which supply phosphorus into soil solutions under submerged condition with soils originated from granite and basalt rocks. The granite origin soils with different amounts of available phosphorus have no effect of phosphate application on rice yield, while the basalt origin soil has the big effect. 2. Almost same pattern of change in pH and concentrations of phosphorus and cations in the soil solutions during the submerging period was. shown. Almost no difference in the values was recognized between NPK and NK treatments of the granite origin soils, but the difference of the basalt origin soil was recognized. 3. it was estimated from solubility diagram that phosphorus concentration in the soil solutions was governed by phosphate applied and variscite in the soils for the early stage of submerging period, and then it became to be governed by vivianite in the soils.

  • PDF

Concentration of Arsenic in Rice Plants and Paddy Soils in the Vicinity of Abandoned Zinc Mine (폐광산 인근 논토양과 수도의 비소함량 조사)

  • Kim, Chan-Yong;Park, Man;Lee, Dong-Hoon;Choi, Choong-Lyeal;Kim, Kwang-Seop;Choi, Jung;Seo, Young-Jin
    • Applied Biological Chemistry
    • /
    • v.45 no.3
    • /
    • pp.152-156
    • /
    • 2002
  • Soils near abandoned zinc mines were known to be contaminated with arsenic-rich mining by-products. To examine the potential impacts of arsenic- contaminated soils on plant growth, surface soils were subjected to sequential extraction. Results revealed that 54% and 74% total As and 74% total extractable As were bound to iron hydrous oxide, and water soluble fraction was below detection limit. Arsenic faction extracted using the Koran standard method(dissolution of metals via treatment of 1 N HCI) was strongly correlated with the Fe-bound As fraction ($r^2=0.884**$). Arsenic level in rice plant roots was the highest with a maximum value of 154.9 mg/kg, whereas it was below 0.6 mg/kg in grains. Arsenic level in rice plant roots was strongly correlated with those of Al-bound As ($r^2=0.821**$) and 1N HCI-extractable As levels ($r^2=0.801**$).

Development of a Residue Analysis Method for Metamifop in Paddy Water, Soil, and Rice with HPLC (HPLC를 이용한 농업용수, 논토양, 및 현미 중 metamifop의 잔류분석법 개발)

  • Park, Hee-Woon;Moon, Joon-Kwan
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.68-74
    • /
    • 2017
  • An analytical method for detecting metamifop residue in paddy water, soil, and rice with high performance liquid chromatography (HPLC) was developed. Water was extracted with ethyl acetate before analyzing by HPLC. Soil residues were extracted with acetone under acidic condition and after purifying with $Extrelut^{(R)}$ NT, and silica SPE, the residue was analyzed by HPLC. For residue analysis in rice, the procedure involved extraction with acetone, purification with $Extrelut^{(R)}$ NT, partitioning between acetonitrile/hexane, purification with silica SPE cartridge, and analysis by HPLC. The limit of detection (LOD) was 1.0 ng, limit of quantitation (LOQ) was 3.0 ng, and method limit of quantitation (MLOQ) were 0.001 mg/L for paddy water, 0.01 mg/kg for rice and soil, respectively. Standard calibration curve shows linearity from 0.05 mg/kg to 5.0 mg/kg ($R^2=0.9999$). The recoveries in fortified paddy water were $91.3{\pm}3.5%$ (0.01 mg/L level) and $93.2{\pm}6.3%$ (0.05 mg/L level). The recoveries in fortified paddy soils were $92.5{\pm}4.0%$ (0.1 mg/kg level) and $92.7{\pm}4.0%$ (0.5 mg/kg level) in soil A, while, $102.3{\pm}4.4%$ (0.1 mg/kg level) and $98.9{\pm}7.9%$ (0.5 mg/kg level) in soil B, respectively. The recoveries in fortified rice were $93.0{\pm}6.9%$ (0.1 mg/kg level) and $85.0{\pm}3.5%$ (0.5 mg/kg level). This method was proved to be effective and can be used to determine the metamifop residue in paddy water, paddy soil, and rice.

Corrosion Rate of Structural Pipes for Greenhouse (온실 구조용 파이프의 부식속도 검토)

  • Yun, Sung-Wook;Choi, Man Kwon;Lee, Si Young;Moon, Sung Dong;Yoon, Yong Cheol
    • Journal of Bio-Environment Control
    • /
    • v.24 no.4
    • /
    • pp.333-340
    • /
    • 2015
  • Because soils in reclaimed lands nearby coastal areas have much higher salinity and moisture content than soils in inland area, parts of greenhouses embedded in such soils are exposed to highly corrosive environments. Owing to the accelerated corrosion of galvanized steel pipes for substrucrture and structure of greenhouses in saline environments, repair and reinforcement technologies and efficient maintenance and management for the construction materials in such facilities are required. In this study, we measured the corrosion rates of the parts used for greenhouse construction that are exposed to the saline environment to obtain a basic database for the establishment of maintenance and reinforcement standards for greenhouse construction in reclaimed lands with soils with high salinity. All the test pipes were exposed to soil and water environments with 0, 0.1, 0.3, and 0.5% salinity during the observation period of 480 days. At the end of the observation period, salinity-dependent differences of corrosion rate between black-surface corrosion and relatively regular corrosion were clearly manifested in a visual assessment. For the soils in rice paddies, the corrosion growth rate increased with salinity (0.008, 0.027, 0.036, and $0.043mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively). The results for the soils in agricultural fields are 0.0002, 0.039, 0.040, and $0.039mm{\cdot}yr^{-1}$ at 0, 0.1, 0.3, and 0.5% salinity, respectively. The higher corrosion rate of rice-paddy soil was associated with the relatively high proportion of fine particles in it, reflecting the general tendency of soils with evenly distributed fine particles. Hence, it was concluded that thorough measures should be taken to counteract pipe corrosion, given that besides high salinity, the soils in reclaimed lands are expected to have a higher proportion of fine particles than those in inland rice paddies and agricultural fields.

Compaction Characteristics of Multi-cropping Paddy Soils in South-eastern Part of Korea (우리나라 동남부 다모작 논토양의 경반화 특성)

  • Yun, Eul-Soo;Jung, Ki-Yeul;Park, Ki-Do;Sonn, Yeon-Kyu;Park, Chang-Yeong;Hwang, Jae-Bog;Nam, Min-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.688-695
    • /
    • 2011
  • This study was carried out for some survey about soil compaction in the multi-cropping system of paddy field. Investigated sites were 90 farmer's fields in south-eastern part of Korea. The tillage practices season was different according to cropping system of paddy; in spring for mono rice cultivation and in autumn for the multi-cropping field. The average tillage depth in investigated sites was about 25 cm, however, it is different between the farmer's tillage practices and soil characteristics. It is high correlation to tillage deep and minimum resistance of penetration. The reaching soil deep to maximum resistance of penetration was about 27 cm, and average penetration resistance of the deep is 1.8~2.0 MPa for moderately fine-textured soils and more than 3.0 MPa for moderately coarse-textured soils. The difference of penetration resistance between cultivating and compacted layer was in order to sandy loam > clayey loam > clayey, and the difference was lesser in poorly drained soils than somewhat poorly ones. In the rice mono cropping field, the maximum resistance in no-tillage for 15 years was 1.18~1.25 Mpa at 20~25 cm in soil deep, however, the resistance of field with every year tillage practices was 2.03~2.21 Mpa. In the extremely compacted sandy loam textured soils, the penetration resistance at 30 cm in soil depth was drastically reduced by the subsoil from 5.2 Mpa to 3.2 Mpa, and the watermelon root in plastic film house was deep elongated.